Please use this identifier to cite or link to this item: https://doi.org/10.3390/cancers12061599
Title: Whole exome sequencing of multi-regional biopsies from metastatic lesions to evaluate actionable truncal mutations using a single-pass percutaneous technique
Authors: Heong V.
Tay D.
Goh S.E. 
Wee B. 
Tan T.Z. 
Soo R. 
Pang B. 
Lim D. 
Gopinathan A. 
Ow S. 
Chee C.E. 
Goh B.C. 
Lee S.C. 
Yong W.P. 
Wong A. 
Omar M.F.M. 
Soong R. 
Tan D.S.P. 
Keywords: Clonality classification
Intratumor heterogeneity
Multiple biopsies
Strategic therapeutic intervention
Tumor evolution
Issue Date: 2020
Publisher: MDPI AG
Citation: Heong V., Tay D., Goh S.E., Wee B., Tan T.Z., Soo R., Pang B., Lim D., Gopinathan A., Ow S., Chee C.E., Goh B.C., Lee S.C., Yong W.P., Wong A., Omar M.F.M., Soong R., Tan D.S.P. (2020). Whole exome sequencing of multi-regional biopsies from metastatic lesions to evaluate actionable truncal mutations using a single-pass percutaneous technique. Cancers 12 (6) : 1-17. ScholarBank@NUS Repository. https://doi.org/10.3390/cancers12061599
Abstract: We investigate the feasibility of obtaining multiple spatially-separated biopsies from a single lesion to explore intratumor heterogeneity and identify actionable truncal mutations using whole exome sequencing (WES). A single-pass radiologically-guided percutaneous technique was used to obtain four spatially-separated biopsies from a single metastatic lesion. WES was performed to identify putative truncal variants (PTVs), defined as a non-synonymous somatic (NSS) variant present in all four spatially separated biopsies. Actionable truncal mutations—filtered using the FoundationOne panel—were defined as clinically relevant PTVs. Mutational landscapes of each biopsy and their association with patient outcomes were assessed. WES on 50 biopsied samples from 13 patients across six cancer types were analyzed. Actionable truncal mutations were identified in 9/13 patients; 31.1 ± 5.12 more unique NSS variants were detected with every additional multi-region tumor biopsy (MRTB) analyzed. The number of PTVs dropped by 16.1 ± 17.9 with every additional MRTB, with the decrease most pronounced (36.8 ± 19.7) when two MRTB were analyzed compared to one. MRTB most reliably predicted PTV compared to in silico analysis of allele frequencies and cancer cell fraction based on one biopsy sample. Three patients treated with actionable truncal mutation-directed therapy derived clinical benefit. Multi-regional sampling for genomics analysis is feasible and informative to help prioritize precision-therapy strategies. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
Source Title: Cancers
URI: https://scholarbank.nus.edu.sg/handle/10635/175942
ISSN: 20726694
DOI: 10.3390/cancers12061599
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Whole Exome Sequencing of Multi-Regional Biopsies from Metastatic Lesions to Evaluate Actionable Truncal Mutations Using a Single-Pass Percutaneous Technique.pdf1.35 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.