Please use this identifier to cite or link to this item:
https://doi.org/10.1038/s41524-020-00349-9
Title: | Author Correction: Embedding physics domain knowledge into a Bayesian network enables layer-by-layer process innovation for photovoltaics (npj Computational Materials, (2020), 6, 1, (9), 10.1038/s41524-020-0277-x) | Authors: | Ren, Z Oviedo, F Thway, M Tian, SIP Wang, Y Xue, H Perea, JD Layurova, M Heumueller, T Birgersson, E Aberle, AG Brabec, CJ Stangl, R Li, Q Sun, S Lin, F Peters, IM Buonassisi, T |
Issue Date: | 1-Dec-2020 | Publisher: | Nature Research | Citation: | Ren, Z, Oviedo, F, Thway, M, Tian, SIP, Wang, Y, Xue, H, Perea, JD, Layurova, M, Heumueller, T, Birgersson, E, Aberle, AG, Brabec, CJ, Stangl, R, Li, Q, Sun, S, Lin, F, Peters, IM, Buonassisi, T (2020-12-01). Author Correction: Embedding physics domain knowledge into a Bayesian network enables layer-by-layer process innovation for photovoltaics (npj Computational Materials, (2020), 6, 1, (9), 10.1038/s41524-020-0277-x). npj Computational Materials 6 (1). ScholarBank@NUS Repository. https://doi.org/10.1038/s41524-020-00349-9 | Abstract: | © 2020, The Author(s). An amendment to this paper has been published and can be accessed via a link at the top of the paper. | Source Title: | npj Computational Materials | URI: | https://scholarbank.nus.edu.sg/handle/10635/171573 | ISSN: | 20573960 | DOI: | 10.1038/s41524-020-00349-9 |
Appears in Collections: | Staff Publications Elements |
Show full item record
Files in This Item:
File | Description | Size | Format | Access Settings | Version | |
---|---|---|---|---|---|---|
Embedding physics domain-published-open access.pdf | Published version | 1.74 MB | Adobe PDF | OPEN | Published | View/Download |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.