Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-017-00727-w
Title: Tuning magnetoresistance in molybdenum disulphide and graphene using a molecular spin transition
Authors: Datta S. 
Cai Y.
Yudhistira I. 
Zeng Z. 
Zhang Y.-W. 
Zhang H.
Adam S. 
Wu J. 
Loh K.P. 
Keywords: disulfide
graphene
methane
molybdenum
molybdenum disulfide
quinoidal dithienyl perylenequinodimethane
unclassified drug
electron density
equipment
high temperature
low temperature
molybdenum
temperature effect
two-dimensional modeling
Article
chemical structure
electric conductance
electromagnetism
field effect transistor
high temperature
low temperature
magnet
molecular dynamics
molecular spin transition
Issue Date: 2017
Publisher: Nature Publishing Group
Citation: Datta S., Cai Y., Yudhistira I., Zeng Z., Zhang Y.-W., Zhang H., Adam S., Wu J., Loh K.P. (2017). Tuning magnetoresistance in molybdenum disulphide and graphene using a molecular spin transition. Nature Communications 8 (1) : 677. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-017-00727-w
Abstract: Coupling spins of molecular magnets to two-dimensional (2D) materials provides a framework to manipulate the magneto-conductance of 2D materials. However, with most molecules, the spin coupling is usually weak and devices fabricated from these require operation at low temperatures, which prevents practical applications. Here, we demonstrate field-effect transistors based on the coupling of a magnetic molecule quinoidal dithienyl perylenequinodimethane (QDTP) to 2D materials. Uniquely, QDTP switches from a spin-singlet state at low temperature to a spin-triplet state above 370 K, and the spin transition can be electrically transduced by both graphene and molybdenum disulphide. Graphene-QDTP shows hole-doping and a large positive magnetoresistance (~ 50%), while molybdenum disulphide-QDTP demonstrates electron-doping and a switch to large negative magnetoresistance (~ 100%) above the magnetic transition. Our work shows the promise of spin detection at high temperature by coupling 2D materials and molecular magnets. © 2017 The Author(s).
Source Title: Nature Communications
URI: https://scholarbank.nus.edu.sg/handle/10635/174486
ISSN: 2041-1723
DOI: 10.1038/s41467-017-00727-w
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467-017-00727-w.pdf1.6 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.