Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-017-00727-w
DC FieldValue
dc.titleTuning magnetoresistance in molybdenum disulphide and graphene using a molecular spin transition
dc.contributor.authorDatta S.
dc.contributor.authorCai Y.
dc.contributor.authorYudhistira I.
dc.contributor.authorZeng Z.
dc.contributor.authorZhang Y.-W.
dc.contributor.authorZhang H.
dc.contributor.authorAdam S.
dc.contributor.authorWu J.
dc.contributor.authorLoh K.P.
dc.date.accessioned2020-09-06T16:04:06Z
dc.date.available2020-09-06T16:04:06Z
dc.date.issued2017
dc.identifier.citationDatta S., Cai Y., Yudhistira I., Zeng Z., Zhang Y.-W., Zhang H., Adam S., Wu J., Loh K.P. (2017). Tuning magnetoresistance in molybdenum disulphide and graphene using a molecular spin transition. Nature Communications 8 (1) : 677. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-017-00727-w
dc.identifier.issn2041-1723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/174486
dc.description.abstractCoupling spins of molecular magnets to two-dimensional (2D) materials provides a framework to manipulate the magneto-conductance of 2D materials. However, with most molecules, the spin coupling is usually weak and devices fabricated from these require operation at low temperatures, which prevents practical applications. Here, we demonstrate field-effect transistors based on the coupling of a magnetic molecule quinoidal dithienyl perylenequinodimethane (QDTP) to 2D materials. Uniquely, QDTP switches from a spin-singlet state at low temperature to a spin-triplet state above 370 K, and the spin transition can be electrically transduced by both graphene and molybdenum disulphide. Graphene-QDTP shows hole-doping and a large positive magnetoresistance (~ 50%), while molybdenum disulphide-QDTP demonstrates electron-doping and a switch to large negative magnetoresistance (~ 100%) above the magnetic transition. Our work shows the promise of spin detection at high temperature by coupling 2D materials and molecular magnets. © 2017 The Author(s).
dc.publisherNature Publishing Group
dc.sourceUnpaywall 20200831
dc.subjectdisulfide
dc.subjectgraphene
dc.subjectmethane
dc.subjectmolybdenum
dc.subjectmolybdenum disulfide
dc.subjectquinoidal dithienyl perylenequinodimethane
dc.subjectunclassified drug
dc.subjectelectron density
dc.subjectequipment
dc.subjecthigh temperature
dc.subjectlow temperature
dc.subjectmolybdenum
dc.subjecttemperature effect
dc.subjecttwo-dimensional modeling
dc.subjectArticle
dc.subjectchemical structure
dc.subjectelectric conductance
dc.subjectelectromagnetism
dc.subjectfield effect transistor
dc.subjecthigh temperature
dc.subjectlow temperature
dc.subjectmagnet
dc.subjectmolecular dynamics
dc.subjectmolecular spin transition
dc.typeArticle
dc.contributor.departmentCHEMISTRY
dc.contributor.departmentCENTRE FOR ADVANCED 2D MATERIALS
dc.contributor.departmentYALE-NUS COLLEGE
dc.description.doi10.1038/s41467-017-00727-w
dc.description.sourcetitleNature Communications
dc.description.volume8
dc.description.issue1
dc.description.page677
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467-017-00727-w.pdf1.6 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.