Please use this identifier to cite or link to this item: https://doi.org/10.1021/acsnano.3c06803
Title: Red Blood Cell-Derived Extracellular Vesicles Display Endogenous Antiviral Effects and Enhance the Efficacy of Antiviral Oligonucleotide Therapy
Authors: Jayasinghe, Migara K 
Gao, Chang
Yap, Gracemary 
Yeo, Brendon Zhi Jie
Vu, Luyen Tien 
Tay, Douglas Jie Wen 
Loh, Wen Xiu 
Aw, Zhen Qin 
Chen, Huixin 
Phung, Dai Cao 
Hoang, Dong Van
Prajogo, Rebecca Carissa 
Hooi, Lissa 
Lim, Fang Qing
Pirisinu, Marco
Mok, Chee Keng 
Lim, Kah Wai
Tang, Sze Jing 
Tan, Kai Sen 
Chow, Edward Kai-Hua 
Chen, Leilei 
Phan, Anh Tuan
Chu, Justin Jang Hann 
Le, Minh TN 
Keywords: extracellular vesicles
SARS-CoV-2
antisenseoligonucleotides
viral inhibition
apoptotic mimicry
Issue Date: 18-Oct-2023
Publisher: AMER CHEMICAL SOC
Citation: Jayasinghe, Migara K, Gao, Chang, Yap, Gracemary, Yeo, Brendon Zhi Jie, Vu, Luyen Tien, Tay, Douglas Jie Wen, Loh, Wen Xiu, Aw, Zhen Qin, Chen, Huixin, Phung, Dai Cao, Hoang, Dong Van, Prajogo, Rebecca Carissa, Hooi, Lissa, Lim, Fang Qing, Pirisinu, Marco, Mok, Chee Keng, Lim, Kah Wai, Tang, Sze Jing, Tan, Kai Sen, Chow, Edward Kai-Hua, Chen, Leilei, Phan, Anh Tuan, Chu, Justin Jang Hann, Le, Minh TN (2023-10-18). Red Blood Cell-Derived Extracellular Vesicles Display Endogenous Antiviral Effects and Enhance the Efficacy of Antiviral Oligonucleotide Therapy. ACS NANO 17 (21) : 21639-21661. ScholarBank@NUS Repository. https://doi.org/10.1021/acsnano.3c06803
Abstract: The COVID-19 pandemic has resulted in a large number of fatalities and, at present, lacks a readily available curative treatment for patients. Here, we demonstrate that unmodified red blood cell-derived extracellular vesicles (RBCEVs) can inhibit SARS-CoV-2 infection in a phosphatidylserine (PS) dependent manner. Using T cell immunoglobulin mucin domain-1 (TIM-1) as an example, we demonstrate that PS receptors on cells can significantly increase the adsorption and infection of authentic and pseudotyped SARS-CoV-2 viruses. RBCEVs competitively inhibit this interaction and block TIM-1-mediated viral entry into cells. We further extend the therapeutic efficacy of this antiviral treatment by loading antisense oligonucleotides (ASOs) designed to target conserved regions of key SARS-CoV-2 genes into RBCEVs. We establish that ASO-loaded RBCEVs are efficiently taken up by cells in vitro and in vivo to suppress SARS-CoV-2 replication. Our findings indicate that this RBCEV-based SARS-CoV-2 therapeutic displays promise as a potential treatment capable of inhibiting SARS-CoV-2 entry and replication.
Source Title: ACS NANO
URI: https://scholarbank.nus.edu.sg/handle/10635/246880
ISSN: 1936-0851
1936-086X
DOI: 10.1021/acsnano.3c06803
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
nn3c06803.pdfPublished version11.65 MBAdobe PDF

OPEN

PublishedView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.