Please use this identifier to cite or link to this item: https://doi.org/10.1021/acsnano.3c06803
DC FieldValue
dc.titleRed Blood Cell-Derived Extracellular Vesicles Display Endogenous Antiviral Effects and Enhance the Efficacy of Antiviral Oligonucleotide Therapy
dc.contributor.authorJayasinghe, Migara K
dc.contributor.authorGao, Chang
dc.contributor.authorYap, Gracemary
dc.contributor.authorYeo, Brendon Zhi Jie
dc.contributor.authorVu, Luyen Tien
dc.contributor.authorTay, Douglas Jie Wen
dc.contributor.authorLoh, Wen Xiu
dc.contributor.authorAw, Zhen Qin
dc.contributor.authorChen, Huixin
dc.contributor.authorPhung, Dai Cao
dc.contributor.authorHoang, Dong Van
dc.contributor.authorPrajogo, Rebecca Carissa
dc.contributor.authorHooi, Lissa
dc.contributor.authorLim, Fang Qing
dc.contributor.authorPirisinu, Marco
dc.contributor.authorMok, Chee Keng
dc.contributor.authorLim, Kah Wai
dc.contributor.authorTang, Sze Jing
dc.contributor.authorTan, Kai Sen
dc.contributor.authorChow, Edward Kai-Hua
dc.contributor.authorChen, Leilei
dc.contributor.authorPhan, Anh Tuan
dc.contributor.authorChu, Justin Jang Hann
dc.contributor.authorLe, Minh TN
dc.date.accessioned2024-01-29T11:00:29Z
dc.date.available2024-01-29T11:00:29Z
dc.date.issued2023-10-18
dc.identifier.citationJayasinghe, Migara K, Gao, Chang, Yap, Gracemary, Yeo, Brendon Zhi Jie, Vu, Luyen Tien, Tay, Douglas Jie Wen, Loh, Wen Xiu, Aw, Zhen Qin, Chen, Huixin, Phung, Dai Cao, Hoang, Dong Van, Prajogo, Rebecca Carissa, Hooi, Lissa, Lim, Fang Qing, Pirisinu, Marco, Mok, Chee Keng, Lim, Kah Wai, Tang, Sze Jing, Tan, Kai Sen, Chow, Edward Kai-Hua, Chen, Leilei, Phan, Anh Tuan, Chu, Justin Jang Hann, Le, Minh TN (2023-10-18). Red Blood Cell-Derived Extracellular Vesicles Display Endogenous Antiviral Effects and Enhance the Efficacy of Antiviral Oligonucleotide Therapy. ACS NANO 17 (21) : 21639-21661. ScholarBank@NUS Repository. https://doi.org/10.1021/acsnano.3c06803
dc.identifier.issn1936-0851
dc.identifier.issn1936-086X
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/246880
dc.description.abstractThe COVID-19 pandemic has resulted in a large number of fatalities and, at present, lacks a readily available curative treatment for patients. Here, we demonstrate that unmodified red blood cell-derived extracellular vesicles (RBCEVs) can inhibit SARS-CoV-2 infection in a phosphatidylserine (PS) dependent manner. Using T cell immunoglobulin mucin domain-1 (TIM-1) as an example, we demonstrate that PS receptors on cells can significantly increase the adsorption and infection of authentic and pseudotyped SARS-CoV-2 viruses. RBCEVs competitively inhibit this interaction and block TIM-1-mediated viral entry into cells. We further extend the therapeutic efficacy of this antiviral treatment by loading antisense oligonucleotides (ASOs) designed to target conserved regions of key SARS-CoV-2 genes into RBCEVs. We establish that ASO-loaded RBCEVs are efficiently taken up by cells in vitro and in vivo to suppress SARS-CoV-2 replication. Our findings indicate that this RBCEV-based SARS-CoV-2 therapeutic displays promise as a potential treatment capable of inhibiting SARS-CoV-2 entry and replication.
dc.language.isoen
dc.publisherAMER CHEMICAL SOC
dc.sourceElements
dc.subjectextracellular vesicles
dc.subjectSARS-CoV-2
dc.subjectantisenseoligonucleotides
dc.subjectviral inhibition
dc.subjectapoptotic mimicry
dc.typeArticle
dc.date.updated2024-01-29T03:03:23Z
dc.contributor.departmentCANCER SCIENCE INSTITUTE OF SINGAPORE
dc.contributor.departmentDEAN'S OFFICE (MEDICINE)
dc.contributor.departmentANATOMY
dc.contributor.departmentMICROBIOLOGY AND IMMUNOLOGY
dc.contributor.departmentPHARMACOLOGY
dc.contributor.departmentSURGERY
dc.description.doi10.1021/acsnano.3c06803
dc.description.sourcetitleACS NANO
dc.description.volume17
dc.description.issue21
dc.description.page21639-21661
dc.published.statePublished
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
nn3c06803.pdfPublished version11.65 MBAdobe PDF

OPEN

PublishedView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.