Please use this identifier to cite or link to this item: https://doi.org/10.1116/5.0026178
Title: Roadmap on Atomtronics: State of the art and perspective
Authors: Amico, L. 
Boshier, M.
Birkl, G.
Minguzzi, A.
Miniatura, C. 
Kwek, L.-C. 
Davit Aghamalyan 
Ahufinger, V.
Anderson, D.
Andrei, N.
Arnold, A.S.
Baker, M.
Bell, T.A.
Bland, T.
Brantut, J.P.
Cassettari, D.
Chetcuti, W.J.
Chevy, F.
Citro, R.
De Palo, S.
Dumke, R. 
Edwards, M.
Folman, R.
Fortagh, J.
Gardiner, S.A.
Garraway, B.M.
Gauthier, G.
Günther, A.
Haug, T.
Christoph Hufnagel 
Keil, M.
Ireland, P.
Lebrat, M.
Li, W.
Longchambon, L.
Mompart, J.
Morsch, O.
Naldesi, P.
Neely, T.W.
Olshanii, M.
Orignac, E.
Pandey, S.
Pérez-Obiol, A.
Perrin, H.
Piroli, L.
Polo, J.
Pritchard, A.L.
Proukakis, N.P.
Rylands, C.
Rubinsztein-Dunlop, H.
Scazza, F.
Stringari, S.
Tosto, F.
Trombettoni, A.
Victorin, N.
Klitzing, W.V.
Wilkowski, D. 
Xhani, K.
Yakimenko, A.
Issue Date: 1-Sep-2021
Publisher: American Institute of Physics Inc.
Citation: Amico, L., Boshier, M., Birkl, G., Minguzzi, A., Miniatura, C., Kwek, L.-C., Davit Aghamalyan, Ahufinger, V., Anderson, D., Andrei, N., Arnold, A.S., Baker, M., Bell, T.A., Bland, T., Brantut, J.P., Cassettari, D., Chetcuti, W.J., Chevy, F., Citro, R., De Palo, S., Dumke, R., Edwards, M., Folman, R., Fortagh, J., Gardiner, S.A., Garraway, B.M., Gauthier, G., Günther, A., Haug, T., Christoph Hufnagel, Keil, M., Ireland, P., Lebrat, M., Li, W., Longchambon, L., Mompart, J., Morsch, O., Naldesi, P., Neely, T.W., Olshanii, M., Orignac, E., Pandey, S., Pérez-Obiol, A., Perrin, H., Piroli, L., Polo, J., Pritchard, A.L., Proukakis, N.P., Rylands, C., Rubinsztein-Dunlop, H., Scazza, F., Stringari, S., Tosto, F., Trombettoni, A., Victorin, N., Klitzing, W.V., Wilkowski, D., Xhani, K., Yakimenko, A. (2021-09-01). Roadmap on Atomtronics: State of the art and perspective. AVS Quantum Science 3 (3) : 039201. ScholarBank@NUS Repository. https://doi.org/10.1116/5.0026178
Rights: Attribution 4.0 International
Abstract: Atomtronics deals with matter-wave circuits of ultracold atoms manipulated through magnetic or laser-generated guides with different shapes and intensities. In this way, new types of quantum networks can be constructed in which coherent fluids are controlled with the know-how developed in the atomic and molecular physics community. In particular, quantum devices with enhanced precision, control, and flexibility of their operating conditions can be accessed. Concomitantly, new quantum simulators and emulators harnessing on the coherent current flows can also be developed. Here, the authors survey the landscape of atomtronics-enabled quantum technology and draw a roadmap for the field in the near future. The authors review some of the latest progress achieved in matter-wave circuits' design and atom-chips. Atomtronic networks are deployed as promising platforms for probing many-body physics with a new angle and a new twist. The latter can be done at the level of both equilibrium and nonequilibrium situations. Numerous relevant problems in mesoscopic physics, such as persistent currents and quantum transport in circuits of fermionic or bosonic atoms, are studied through a new lens. The authors summarize some of the atomtronics quantum devices and sensors. Finally, the authors discuss alkali-earth and Rydberg atoms as potential platforms for the realization of atomtronic circuits with special features. © 2021 Author(s).
Source Title: AVS Quantum Science
URI: https://scholarbank.nus.edu.sg/handle/10635/232908
ISSN: 2639-0213
DOI: 10.1116/5.0026178
Rights: Attribution 4.0 International
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1116_5_0026178.pdf11.3 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons