Please use this identifier to cite or link to this item: https://doi.org/10.1371/journal.pone.0248742
Title: The effectiveness of public health interventions against COVID-19: Lessons from the Singapore experience
Authors: Ansah, John P. 
Matchar, David Bruce 
Shao Wei, Sean Lam 
Low, Jenny G. 
Pourghaderi, Ahmad Reza 
Siddiqui, Fahad Javaid 
Min, Tessa Lui Shi 
Wei-Yan, Aloysius Chia 
Ong, Marcus Eng Hock 
Issue Date: 30-Mar-2021
Publisher: Public Library of Science
Citation: Ansah, John P., Matchar, David Bruce, Shao Wei, Sean Lam, Low, Jenny G., Pourghaderi, Ahmad Reza, Siddiqui, Fahad Javaid, Min, Tessa Lui Shi, Wei-Yan, Aloysius Chia, Ong, Marcus Eng Hock (2021-03-30). The effectiveness of public health interventions against COVID-19: Lessons from the Singapore experience. PLoS ONE 16 (3 March) : e0248742. ScholarBank@NUS Repository. https://doi.org/10.1371/journal.pone.0248742
Rights: Attribution 4.0 International
Abstract: Background In dealing with community spread of COVID-19, two active interventions have been attempted or advocated-containment, and mitigation. Given the extensive impact of COVID-19 globally, there is international interest to learn from best practices that have been shown to work in controlling community spread to inform future outbreaks. This study explores the trajectory of COVID-19 infection in Singapore had the government intervention not focused on containment, but rather on mitigation. In addition, we estimate the actual COVID-19 infection cases in Singapore, given that confirmed cases are publicly available. Methods and findings We developed a COVID-19 infection model, which is a modified SIR model that differentiate between detected (diagnosed) and undetected (undiagnosed) individuals and segments total population into seven health states: Susceptible (S), infected asymptomatic undiagnosed (A), infected asymptomatic diagnosed (I), infected symptomatic undiagnosed (U), infected symptomatic diagnosed (E), recovered (R), and dead (D). To account for the infection stages of the asymptomatic and symptomatic infected individuals, the asymptomatic infected individuals were further disaggregated into three infection stages: (a) latent (b) infectious and (c) non-infectious; while the symptomatic infected were disaggregated into two stages: (a) infectious and (b) non-infectious. The simulation result shows that by the end of the current epidemic cycle without considering the possibility of a second wave, under the containment intervention implemented in Singapore, the confirmed number of Singaporeans infected with COVID-19 (diagnosed asymptomatic and symptomatic cases) is projected to be 52,053 (with 95% confidence range of 49,370-54,735) representing 0.87% (0.83%- 0.92%) of the total population; while the actual number of Singaporeans infected with COVID-19 (diagnosed and undiagnosed asymptomatic and symptomatic infected cases) is projected to be 86,041 (81,097-90,986), which is 1.65 times the confirmed cases and represents 1.45% (1.36%-1.53%) of the total population. A peak in infected cases is projected to have occurred on around day 125 (27/05/2020) for the confirmed infected cases and around day 115 (17/05/2020) for the actual infected cases. The number of deaths is estimated to be 37 (34-39) among those infected with COVID-19 by the end of the epidemic cycle; consequently, the perceived case fatality rate is projected to be 0.07%, while the actual case fatality rate is estimated to be 0.043%. Importantly, our simulation model results suggest that there about 65% more COVID-19 infection cases in Singapore that have not been captured in the official reported numbers which could be uncovered via a serological study. Compared to the containment intervention, a mitigation intervention would have resulted in early peak infection, and increase both the cumulative confirmed and actual infection cases and deaths. Conclusion Early public health measures in the context of targeted, aggressive containment including swift and effective contact tracing and quarantine, was likely responsible for suppressing the number of COVID-19 infections in Singapore. © 2021 Ansah et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Source Title: PLoS ONE
URI: https://scholarbank.nus.edu.sg/handle/10635/232823
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0248742
Rights: Attribution 4.0 International
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1371_journal_pone_0248742.pdf2.1 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons