Please use this identifier to cite or link to this item:
https://doi.org/10.1016/j.ejmp.2020.07.005
Title: | Dosimetric uncertainties impact on cell survival curve with low energy proton | Authors: | Hong Qi Tan Wei Yang Calvin Koh Eugenia Li Ling Yeo Khong Wei Ang Dennis Jun Jie Poon Chu Pek Lim Saumitra K. Vjandar Ce-Belle Chen Minqin Ren Thomas Osipowicz Khe Che Soo Melvin Lee Kiang Chua Sung Yong Park |
Keywords: | Proton therapy; Monte Carlo; Cell survival; Microdosimetry; Radiobiology | Issue Date: | 1-Aug-2020 | Publisher: | Elsevier | Citation: | Hong Qi Tan, Wei Yang Calvin Koh, Eugenia Li Ling Yeo, Khong Wei Ang, Dennis Jun Jie Poon, Chu Pek Lim, Saumitra K. Vjandar, Ce-Belle Chen, Minqin Ren, Thomas Osipowicz, Khe Che Soo, Melvin Lee Kiang Chua, Sung Yong Park (2020-08-01). Dosimetric uncertainties impact on cell survival curve with low energy proton. Physica Medica 76 : 77-284. ScholarBank@NUS Repository. https://doi.org/10.1016/j.ejmp.2020.07.005 | Rights: | Attribution-NonCommercial 4.0 International | Abstract: | There is an increasing number of radiobiological experiments being conducted with low energy protons (less than 5 MeV) for radiobiological studies due to availability of sub-millimetre focused beam. However, low energy proton has broad microdosimetric spectra which can introduce dosimetric uncertainty. In this work, we quantify the impact of this dosimetric uncertainties on the cell survival curve and how it affects the estimation of the alpha and beta parameters in the LQ formalism. Monte Carlo simulation is used to generate the microdosimetric spectra in a micrometer-sized water sphere under proton irradiation. This is modelled using radiobiological experiment set-up at the Centre of Ion Beam Application (CIBA) in National University of Singapore. Our results show that the microdosimetric spectra can introduce both systematic and random shifts in dose and cell survival; this effect is most pronounced with low energy protons. The alpha and beta uncertainties can be up to 10% and above 30%, respectively for low energy protons passing through thin cell target (about 10 microns). These uncertainties are non-negligible and show that care must be taken in using the cell survival curve and its derived parameters for radiobiological models. | Source Title: | Physica Medica | URI: | https://scholarbank.nus.edu.sg/handle/10635/231086 | ISSN: | 1120-1797 | DOI: | 10.1016/j.ejmp.2020.07.005 | Rights: | Attribution-NonCommercial 4.0 International |
Appears in Collections: | Staff Publications Elements |
Show full item record
Files in This Item:
File | Description | Size | Format | Access Settings | Version | |
---|---|---|---|---|---|---|
Dosimetric uncertainties impact on cell survival curve with low energy proton.pdf | 593.35 kB | Adobe PDF | OPEN | Pre-print | View/Download |
This item is licensed under a Creative Commons License