Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41534-019-0149-8
Title: Quantum reservoir processing
Authors: Ghosh, S.
Opala, A.
Matuszewski, M.
Paterek, T. 
Liew, T.C.H. 
Issue Date: 2019
Publisher: Nature Partner Journals
Citation: Ghosh, S., Opala, A., Matuszewski, M., Paterek, T., Liew, T.C.H. (2019). Quantum reservoir processing. npj Quantum Information 5 (1) : 35. ScholarBank@NUS Repository. https://doi.org/10.1038/s41534-019-0149-8
Rights: Attribution 4.0 International
Abstract: The concurrent rise of artificial intelligence and quantum information poses an opportunity for creating interdisciplinary technologies like quantum neural networks. Quantum reservoir processing, introduced here, is a platform for quantum information processing developed on the principle of reservoir computing that is a form of an artificial neural network. A quantum reservoir processor can perform qualitative tasks like recognizing quantum states that are entangled as well as quantitative tasks like estimating a nonlinear function of an input quantum state (e.g., entropy, purity, or logarithmic negativity). In this way, experimental schemes that require measurements of multiple observables can be simplified to measurement of one observable on a trained quantum reservoir processor. © 2019, The Author(s).
Source Title: npj Quantum Information
URI: https://scholarbank.nus.edu.sg/handle/10635/210694
ISSN: 20566387
DOI: 10.1038/s41534-019-0149-8
Rights: Attribution 4.0 International
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41534-019-0149-8.pdf1.57 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons