Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41534-019-0149-8
DC FieldValue
dc.titleQuantum reservoir processing
dc.contributor.authorGhosh, S.
dc.contributor.authorOpala, A.
dc.contributor.authorMatuszewski, M.
dc.contributor.authorPaterek, T.
dc.contributor.authorLiew, T.C.H.
dc.date.accessioned2021-12-16T07:44:26Z
dc.date.available2021-12-16T07:44:26Z
dc.date.issued2019
dc.identifier.citationGhosh, S., Opala, A., Matuszewski, M., Paterek, T., Liew, T.C.H. (2019). Quantum reservoir processing. npj Quantum Information 5 (1) : 35. ScholarBank@NUS Repository. https://doi.org/10.1038/s41534-019-0149-8
dc.identifier.issn20566387
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/210694
dc.description.abstractThe concurrent rise of artificial intelligence and quantum information poses an opportunity for creating interdisciplinary technologies like quantum neural networks. Quantum reservoir processing, introduced here, is a platform for quantum information processing developed on the principle of reservoir computing that is a form of an artificial neural network. A quantum reservoir processor can perform qualitative tasks like recognizing quantum states that are entangled as well as quantitative tasks like estimating a nonlinear function of an input quantum state (e.g., entropy, purity, or logarithmic negativity). In this way, experimental schemes that require measurements of multiple observables can be simplified to measurement of one observable on a trained quantum reservoir processor. © 2019, The Author(s).
dc.publisherNature Partner Journals
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2019
dc.typeArticle
dc.contributor.departmentCENTRE FOR QUANTUM TECHNOLOGIES
dc.description.doi10.1038/s41534-019-0149-8
dc.description.sourcetitlenpj Quantum Information
dc.description.volume5
dc.description.issue1
dc.description.page35
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41534-019-0149-8.pdf1.57 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons