Please use this identifier to cite or link to this item: https://doi.org/10.1136/bmjopen-2019-031622
Title: Characterising and predicting persistent high-cost utilisers in healthcare: A retrospective cohort study in Singapore
Authors: Ng, S.H.X. 
Rahman, N. 
Ang, I.Y.H. 
Sridharan, S. 
Ramachandran, S. 
Wang, D.D. 
Khoo, A.
Tan, C.S. 
Feng, M. 
Toh, S.-A.E.S. 
Tan, X.Q. 
Keywords: healthcare costs
high utiliser
machine learning
persistence
Issue Date: 2020
Publisher: BMJ Publishing Group
Citation: Ng, S.H.X., Rahman, N., Ang, I.Y.H., Sridharan, S., Ramachandran, S., Wang, D.D., Khoo, A., Tan, C.S., Feng, M., Toh, S.-A.E.S., Tan, X.Q. (2020). Characterising and predicting persistent high-cost utilisers in healthcare: A retrospective cohort study in Singapore. BMJ Open 10 (1) : e031622. ScholarBank@NUS Repository. https://doi.org/10.1136/bmjopen-2019-031622
Rights: Attribution-NonCommercial 4.0 International
Abstract: Objective: We aim to characterise persistent high utilisers (PHUs) of healthcare services, and correspondingly, transient high utilisers (THUs) and non-high utilisers (non-HUs) for comparison, to facilitate stratifying HUs for targeted intervention. Subsequently we apply machine learning algorithms to predict which HUs will persist as PHUs, to inform future trials testing the effectiveness of interventions in reducing healthcare utilisation in PHUs. Design and setting: This is a retrospective cohort study using administrative data from an Academic Medical Centre (AMC) in Singapore. Participants: Patients who had at least one inpatient admission to the AMC between 2005 and 2013 were included in this study. HUs incurred Singapore Dollar 8150 or more within a year. PHUs were defined as HUs for three consecutive years, while THUs were HUs for 1 or 2 years. Non-HUs did not incur high healthcare costs at any point during the study period. Outcome measures: PHU status at the end of the third year was the outcome of interest. Socio-demographic profiles, clinical complexity and utilisation metrics of each group were reported. Area under curve (AUC) was used to identify the best model to predict persistence. Results: PHUs were older and had higher comorbidity and mortality. Over the three observed years, PHUs' expenditure generally increased, while THUs and non-HUs' spending and inpatient utilisation decreased. The predictive model exhibited good performance during both internal (AUC: 83.2%, 95% CI: 82.2% to 84.2%) and external validation (AUC: 79.8%, 95% CI: 78.8% to 80.8%). Conclusions: The HU population could be stratified into PHUs and THUs, with distinctly different utilisation trajectories. We developed a model that could predict at the end of 1 year, whether a patient in our population will continue to be a HU in the next 2 years. This knowledge would allow healthcare providers to target PHUs in our health system with interventions in a cost-effective manner. © 2020 Author(s) (or their employer(s)).
Source Title: BMJ Open
URI: https://scholarbank.nus.edu.sg/handle/10635/199225
ISSN: 2044-6055
DOI: 10.1136/bmjopen-2019-031622
Rights: Attribution-NonCommercial 4.0 International
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1136_bmjopen_2019_031622.pdf2.28 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons