Please use this identifier to cite or link to this item: https://doi.org/10.1214/20-EJP535
Title: Stein’s method via induction
Authors: Chen, L.H.Y.
Goldstein, L.
Röllin, A. 
Keywords: Erd?s-Rényi random graph
Jack measure
Kolmogorov distance
Optimal rates
Stein’s method
Issue Date: 2020
Publisher: Institute of Mathematical Statistics
Citation: Chen, L.H.Y., Goldstein, L., Röllin, A. (2020). Stein’s method via induction. Electronic Journal of Probability 25 : 1-49. ScholarBank@NUS Repository. https://doi.org/10.1214/20-EJP535
Rights: Attribution 4.0 International
Abstract: Applying an inductive technique for Stein and zero bias couplings yields Berry-Esseen theorems for normal approximation for two new examples. The conditions of the main results do not require that the couplings be bounded. Our two applications, one to the Erd?s-Rényi random graph with a fixed number of edges, and one to Jack measure on tableaux, demonstrate that the method can handle non-bounded variables with non-trivial global dependence, and can produce bounds in the Kolmogorov metric with the optimal rate. © 2020, Institute of Mathematical Statistics. All rights reserved.
Source Title: Electronic Journal of Probability
URI: https://scholarbank.nus.edu.sg/handle/10635/197330
ISSN: 10836489
DOI: 10.1214/20-EJP535
Rights: Attribution 4.0 International
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1214_20_EJP535.pdf634.73 kBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons