Please use this identifier to cite or link to this item: https://doi.org/10.1214/20-EJP535
DC FieldValue
dc.titleStein’s method via induction
dc.contributor.authorChen, L.H.Y.
dc.contributor.authorGoldstein, L.
dc.contributor.authorRöllin, A.
dc.date.accessioned2021-08-17T08:45:50Z
dc.date.available2021-08-17T08:45:50Z
dc.date.issued2020
dc.identifier.citationChen, L.H.Y., Goldstein, L., Röllin, A. (2020). Stein’s method via induction. Electronic Journal of Probability 25 : 1-49. ScholarBank@NUS Repository. https://doi.org/10.1214/20-EJP535
dc.identifier.issn10836489
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/197330
dc.description.abstractApplying an inductive technique for Stein and zero bias couplings yields Berry-Esseen theorems for normal approximation for two new examples. The conditions of the main results do not require that the couplings be bounded. Our two applications, one to the Erd?s-Rényi random graph with a fixed number of edges, and one to Jack measure on tableaux, demonstrate that the method can handle non-bounded variables with non-trivial global dependence, and can produce bounds in the Kolmogorov metric with the optimal rate. © 2020, Institute of Mathematical Statistics. All rights reserved.
dc.publisherInstitute of Mathematical Statistics
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2020
dc.subjectErd?s-Rényi random graph
dc.subjectJack measure
dc.subjectKolmogorov distance
dc.subjectOptimal rates
dc.subjectStein’s method
dc.typeArticle
dc.contributor.departmentSTATISTICS & APPLIED PROBABILITY
dc.description.doi10.1214/20-EJP535
dc.description.sourcetitleElectronic Journal of Probability
dc.description.volume25
dc.description.page1-49
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1214_20_EJP535.pdf634.73 kBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons