Please use this identifier to cite or link to this item:
https://doi.org/10.1214/20-EJP535
DC Field | Value | |
---|---|---|
dc.title | Stein’s method via induction | |
dc.contributor.author | Chen, L.H.Y. | |
dc.contributor.author | Goldstein, L. | |
dc.contributor.author | Röllin, A. | |
dc.date.accessioned | 2021-08-17T08:45:50Z | |
dc.date.available | 2021-08-17T08:45:50Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Chen, L.H.Y., Goldstein, L., Röllin, A. (2020). Stein’s method via induction. Electronic Journal of Probability 25 : 1-49. ScholarBank@NUS Repository. https://doi.org/10.1214/20-EJP535 | |
dc.identifier.issn | 10836489 | |
dc.identifier.uri | https://scholarbank.nus.edu.sg/handle/10635/197330 | |
dc.description.abstract | Applying an inductive technique for Stein and zero bias couplings yields Berry-Esseen theorems for normal approximation for two new examples. The conditions of the main results do not require that the couplings be bounded. Our two applications, one to the Erd?s-Rényi random graph with a fixed number of edges, and one to Jack measure on tableaux, demonstrate that the method can handle non-bounded variables with non-trivial global dependence, and can produce bounds in the Kolmogorov metric with the optimal rate. © 2020, Institute of Mathematical Statistics. All rights reserved. | |
dc.publisher | Institute of Mathematical Statistics | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.source | Scopus OA2020 | |
dc.subject | Erd?s-Rényi random graph | |
dc.subject | Jack measure | |
dc.subject | Kolmogorov distance | |
dc.subject | Optimal rates | |
dc.subject | Stein’s method | |
dc.type | Article | |
dc.contributor.department | STATISTICS & APPLIED PROBABILITY | |
dc.description.doi | 10.1214/20-EJP535 | |
dc.description.sourcetitle | Electronic Journal of Probability | |
dc.description.volume | 25 | |
dc.description.page | 1-49 | |
Appears in Collections: | Elements Staff Publications |
Show simple item record
Files in This Item:
File | Description | Size | Format | Access Settings | Version | |
---|---|---|---|---|---|---|
10_1214_20_EJP535.pdf | 634.73 kB | Adobe PDF | OPEN | None | View/Download |
This item is licensed under a Creative Commons License