Please use this identifier to cite or link to this item:
https://doi.org/10.1038/s41467-018-03675-1
Title: | Genome-wide identification of natural RNA aptamers in prokaryotes and eukaryotes | Authors: | Tapsin, S Sun, M Shen, Y Zhang, H Lim, X.N Susanto, T.T Yang, S.L Zeng, G.S Lee, J Lezhava, A Ang, E.L Zhang, L.H Wang, Y Zhao, H Nagarajan, N Wan, Y |
Keywords: | aptamer ligand messenger RNA riboflavin RNA RNA precursor transcriptome aptamer bacterial RNA flavine mononucleotide RNA RNA binding protein tmRNA chemical binding eukaryote gene expression genome identification method ligand metabolite prokaryote RNA Article Bacillus subtilis bacterial genome Candida albicans Candida dubliniensis cell function eukaryote gene control gene expression genetic code genome analysis in vitro study ligand binding nonhuman operon prokaryote protein secondary structure Pseudomonas aeruginosa regulon riboswitch RNA binding RNA conformation bacterial genome chemistry fungal genome gene expression regulation genetics metabolism Saccharomyces cerevisiae Eukaryota Prokaryota Aptamers, Nucleotide Bacillus subtilis Candida albicans Flavin Mononucleotide Gene Expression Regulation, Bacterial Gene Expression Regulation, Fungal Genome, Bacterial Genome, Fungal Pseudomonas aeruginosa RNA RNA, Bacterial RNA-Binding Proteins Saccharomyces cerevisiae |
Issue Date: | 2018 | Publisher: | Nature Publishing Group | Citation: | Tapsin, S, Sun, M, Shen, Y, Zhang, H, Lim, X.N, Susanto, T.T, Yang, S.L, Zeng, G.S, Lee, J, Lezhava, A, Ang, E.L, Zhang, L.H, Wang, Y, Zhao, H, Nagarajan, N, Wan, Y (2018). Genome-wide identification of natural RNA aptamers in prokaryotes and eukaryotes. Nature Communications 9 (1) : 1289. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-018-03675-1 | Rights: | Attribution 4.0 International | Abstract: | RNAs are well-suited to act as cellular sensors that detect and respond to metabolite changes in the environment, due to their ability to fold into complex structures. Here, we introduce a genome-wide strategy called PARCEL that experimentally identifies RNA aptamers in vitro, in a high-throughput manner. By applying PARCEL to a collection of prokaryotic and eukaryotic organisms, we have revealed 58 new RNA aptamers to three key metabolites, greatly expanding the list of natural RNA aptamers. The newly identified RNA aptamers exhibit significant sequence conservation, are highly structured and show an unexpected prevalence in coding regions. We identified a prokaryotic precursor tmRNA that binds vitamin B2 (FMN) to facilitate its maturation, as well as eukaryotic mRNAs that bind and respond to FMN, suggesting FMN as the second RNA-binding ligand to affect eukaryotic expression. PARCEL results show that RNA-based sensing and gene regulation is more widespread than previously appreciated in different organisms. © 2018 The Author(s). | Source Title: | Nature Communications | URI: | https://scholarbank.nus.edu.sg/handle/10635/178418 | ISSN: | 2041-1723 | DOI: | 10.1038/s41467-018-03675-1 | Rights: | Attribution 4.0 International |
Appears in Collections: | Staff Publications Elements |
Show full item record
Files in This Item:
File | Description | Size | Format | Access Settings | Version | |
---|---|---|---|---|---|---|
10_1038_s41467-018-03675-1.pdf | 1.1 MB | Adobe PDF | OPEN | None | View/Download |
This item is licensed under a Creative Commons License