Please use this identifier to cite or link to this item:
Title: Characterization of noise-induced strange nonchaotic attractors
Authors: Wang, X. 
Lai, Y.-C.
Lai, C.H. 
Issue Date: 2006
Citation: Wang, X., Lai, Y.-C., Lai, C.H. (2006). Characterization of noise-induced strange nonchaotic attractors. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 74 (1) : -. ScholarBank@NUS Repository.
Abstract: Strange nonchaotic attractors (SNAs) were previously thought to arise exclusively in quasiperiodic dynamical systems. A recent study has revealed, however, that such attractors can be induced by noise in nonquasiperiodic discrete-time maps or in periodically driven flows. In particular, in a periodic window of such a system where a periodic attractor coexists with a chaotic saddle (nonattracting chaotic invariant set), none of the Lyapunov exponents of the asymptotic attractor is positive. Small random noise is incapable of causing characteristic changes in the Lyapunov spectrum, but it can make the attractor geometrically strange by dynamically connecting the original periodic attractor with the chaotic saddle. Here we present a detailed study of noise-induced SNAs and the characterization of their properties. Numerical calculations reveal that the fractal dimensions of noise-induced SNAs typically assume fractional values, in contrast to SNAs in quasiperiodically driven systems whose dimensions are integers. An interesting finding is that the fluctuations of the finite-time Lyapunov exponents away from their asymptotic values obey an exponential distribution, the generality of which we are able to establish by a theoretical analysis using random matrices. We suggest a possible experimental test. We expect noise-induced SNAs to be general. © 2006 The American Physical Society.
Source Title: Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
ISSN: 15393755
DOI: 10.1103/PhysRevE.74.016203
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.