Please use this identifier to cite or link to this item:
https://doi.org/10.1039/c1jm13872c
Title: | Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes | Authors: | Lei, Z. Zhang, J. Zhao, X.S. |
Issue Date: | 7-Jan-2012 | Citation: | Lei, Z., Zhang, J., Zhao, X.S. (2012-01-07). Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes. Journal of Materials Chemistry 22 (1) : 153-160. ScholarBank@NUS Repository. https://doi.org/10.1039/c1jm13872c | Abstract: | Growing MnO2 nanofibers on graphitic hollow carbon spheres (GHCS) is conducted by refluxing GHCS in a KMnO4 aqueous solution aimed to enhance the electrochemically active surface area of MnO2. The stoichiometric redox reaction between GHCS and MnO4 - yields GHCS-MnO2 composites with controllable MnO2 content. It is found that these ultrathin MnO2 nanofibers are vertically grown on the external surface of the GHCS, yielding a composite electrode showing good electron transport, rapid ion penetration, fast and reversible Faradic reaction, and excellent rate performance when used as supercapacitor electrode materials. An asymmetric supercapacitor cell with GHCS-MnO2 as the positive electrode and GHCS as the negative electrode can be reversibly charged/discharged at a cell voltage of 2.0 V in a 1.0 mol L-1 Na2SO4 aqueous electrolyte, delivering an energy density of 22.1 Wh kg-1 and a power density of 7.0 kW kg-1. The asymmetric supercapacitor exhibits an excellent electrochemical cycling stability with 99% initial capacitance and 90% coulombic efficiency remained after 1000 continuous cycles measured using the galvanostatic charge-discharge technique. | Source Title: | Journal of Materials Chemistry | URI: | http://scholarbank.nus.edu.sg/handle/10635/85817 | ISSN: | 09599428 | DOI: | 10.1039/c1jm13872c |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.