Please use this identifier to cite or link to this item: https://doi.org/10.1039/c1jm13872c
DC FieldValue
dc.titleUltrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes
dc.contributor.authorLei, Z.
dc.contributor.authorZhang, J.
dc.contributor.authorZhao, X.S.
dc.date.accessioned2014-10-07T09:12:34Z
dc.date.available2014-10-07T09:12:34Z
dc.date.issued2012-01-07
dc.identifier.citationLei, Z., Zhang, J., Zhao, X.S. (2012-01-07). Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes. Journal of Materials Chemistry 22 (1) : 153-160. ScholarBank@NUS Repository. https://doi.org/10.1039/c1jm13872c
dc.identifier.issn09599428
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/85817
dc.description.abstractGrowing MnO2 nanofibers on graphitic hollow carbon spheres (GHCS) is conducted by refluxing GHCS in a KMnO4 aqueous solution aimed to enhance the electrochemically active surface area of MnO2. The stoichiometric redox reaction between GHCS and MnO4 - yields GHCS-MnO2 composites with controllable MnO2 content. It is found that these ultrathin MnO2 nanofibers are vertically grown on the external surface of the GHCS, yielding a composite electrode showing good electron transport, rapid ion penetration, fast and reversible Faradic reaction, and excellent rate performance when used as supercapacitor electrode materials. An asymmetric supercapacitor cell with GHCS-MnO2 as the positive electrode and GHCS as the negative electrode can be reversibly charged/discharged at a cell voltage of 2.0 V in a 1.0 mol L-1 Na2SO4 aqueous electrolyte, delivering an energy density of 22.1 Wh kg-1 and a power density of 7.0 kW kg-1. The asymmetric supercapacitor exhibits an excellent electrochemical cycling stability with 99% initial capacitance and 90% coulombic efficiency remained after 1000 continuous cycles measured using the galvanostatic charge-discharge technique.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1039/c1jm13872c
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMECHANICAL ENGINEERING
dc.contributor.departmentCHEMICAL & BIOMOLECULAR ENGINEERING
dc.description.doi10.1039/c1jm13872c
dc.description.sourcetitleJournal of Materials Chemistry
dc.description.volume22
dc.description.issue1
dc.description.page153-160
dc.description.codenJMACE
dc.identifier.isiut000297598400020
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.