Please use this identifier to cite or link to this item: https://doi.org/10.1109/JSTQE.2009.2025142
Title: Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform
Authors: Ang, K.-W.
Liow, T.-Y.
Yu, M.-B.
Fang, Q.
Song, J.
Lo, G.-Q.
Kwong, D.-L. 
Keywords: CMOS circuit
Germanium
Integrated photonics
Near infrared
Photodetector
Silicon-on-insulator (SOI)
Issue Date: Jan-2010
Citation: Ang, K.-W., Liow, T.-Y., Yu, M.-B., Fang, Q., Song, J., Lo, G.-Q., Kwong, D.-L. (2010-01). Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform. IEEE Journal on Selected Topics in Quantum Electronics 16 (1) : 106-113. ScholarBank@NUS Repository. https://doi.org/10.1109/JSTQE.2009.2025142
Abstract: The design and fabrication of a monolithically integrated evanescent-coupled Ge-on-silicon-on-insulator (SOI) photodetector and CMOS circuits were realized on common SOI platform using an electronic-first and photonic-last integration approach. High-performance detector with an integrated Si waveguide was demonstrated on epitaxial Ge-absorbing layer selectively grown on an ultrathin SOI substrate. Performance metrics of photodetector designs featuring vertical and lateral PIN configurations were investigated. When operated at a bias of 1.0 V, a vertical PIN detector achieved a lower I-dark of 0.57 A as compared to a lateral PIN detector, a value that is below the typical $\sim$ 1 $\mu$A upper limit acceptable for high-speed-receiver design. Very high responsivity of $\sim$0.92 A/W was obtained in both detector designs for a wavelength of 1550 nm, which corresponds to a quantum efficiency of ∼73%. Impulse response measurements showed that the vertical PIN detector gives rise to a smaller full-width at half-maximum of ∼ 24.4 ps over a lateral PIN detector, which corresponds to a 3 dB bandwidth of ∼11.3 GHz. RC time delay is shown to be the dominant factor limiting the speed performance. Eye patterns (pseudorandom binary sequence 27-1) measurement further confirms the achievement of high-speed and low-noise photodetection at a bit rate of 8.5 Gb/s. Excellent transfer and output characteristics have also been achieved by the integrated CMOS inverter circuits in addition to the well-behaved logic functions. The introduction of an additional thermal budget (800 °C) arising from the Ge epitaxy growth has no observable detrimental impact on the short-channel control of the CMOS inverter circuit. In addition, we describe the issues associated with monolithic integration and discuss the potential of Ge-detector/Si CMOS receiver for future optical communication applications. © 2006 IEEE.
Source Title: IEEE Journal on Selected Topics in Quantum Electronics
URI: http://scholarbank.nus.edu.sg/handle/10635/82631
ISSN: 1077260X
DOI: 10.1109/JSTQE.2009.2025142
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.