Please use this identifier to cite or link to this item:
https://doi.org/10.1002/adom.201200026
Title: | Water-Soluble Conjugated Polymers for Simultaneous Two-Photon Cell Imaging and Two-Photon Photodynamic Therapy | Authors: | Shen, X. Li, L. Min Chan, A.C. Gao, N. Yao, S.Q. Xu, Q.-H. |
Keywords: | Conjugated polymers Photodynamic therapy Singlet oxygen Two-photon absorption Two-photon imaging |
Issue Date: | Jan-2013 | Citation: | Shen, X., Li, L., Min Chan, A.C., Gao, N., Yao, S.Q., Xu, Q.-H. (2013-01). Water-Soluble Conjugated Polymers for Simultaneous Two-Photon Cell Imaging and Two-Photon Photodynamic Therapy. Advanced Optical Materials 1 (1) : 92-99. ScholarBank@NUS Repository. https://doi.org/10.1002/adom.201200026 | Abstract: | Conventional photosensitizers generally suffer from low efficiency in novel non-invasive two-photon photodynamic cancer therapy due to their small two-photon absorption cross section and they lack an imaging capability for therapy guiding due to their low fluorescence yield. Demonstrated here is the first water-soluble conjugated polymers as direct two-photon photosensitizers with dual capability of two-photon cell imaging and two-photon photodynamic therapy. By introducing a strong electron-withdrawing cyano group into the phenyl ring of the backbone, the cyano-substituted poly(fluorene-2,7-ylenevinylene-co-phenylene) (PFVCN) displays a 2.4 times higher maximum two-photon absorption cross section per repeat unit and significantly higher fluorescence quantum yield in water than the unsubstituted PFV. The large two-photon absorption cross section of PFVCN allows it to efficiently generate singlet oxygen under two-photon excitation, which is critical for two-photon photodynamic therapy. Two-photon excitation cell imaging and efficient two-photon-induced photodynamic therapy effect on cancer cells of PFVCN are successfully demonstrated. These studies provide insight in designing novel photosensitizing agents for simultaneous two-photon imaging and two-photon photodynamic therapy, which allows two-photon imaging guided therapy to fully take the unique advantages of two-photon excitation such as deep penetration and 3D selectivity. A series of water-soluble conjugated polymers with large two-photon absorption cross section are synthesized. PFVCN is found to display high fluorescence brightness and a high singlet oxygen generation capability under two-photon excitation. Its potential application as a promising agent for simultaneous two-photon imaging and two-photon photodynamic therapy are demonstrated. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. | Source Title: | Advanced Optical Materials | URI: | http://scholarbank.nus.edu.sg/handle/10635/77365 | ISSN: | 21951071 | DOI: | 10.1002/adom.201200026 |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.