Please use this identifier to cite or link to this item:
Title: An analytical solution of the mild-slope equation for waves around a circular island on a paraboloidal shoal
Authors: Liu, H.-W. 
Lin, P. 
Shankar, N.J. 
Keywords: Analytical solution
Homma's island
The mild-slope equation
Wave diffraction
Wave dispersion
Wave refraction
Issue Date: Aug-2004
Citation: Liu, H.-W., Lin, P., Shankar, N.J. (2004-08). An analytical solution of the mild-slope equation for waves around a circular island on a paraboloidal shoal. Coastal Engineering 51 (5-6) : 421-437. ScholarBank@NUS Repository.
Abstract: In this paper, we develop an analytical technique in terms of series expansions to solve the mild-slope equation on an axi-symmetric topography. This technique is applied to study the combined refraction and diffraction of plane monochromatic waves by a circular cylindrical island mounted on a paraboloidal shoal. By using the direct solution for the wave dispersion equation by Hunt [J. Waterw., Port, Coast., Ocean Div. Proc ASCE 4 (1979) 457], the mild-slope equation becomes explicit and it is then solved in terms of combined Fourier series and Taylor series. It is found that, to calculate the wave elevation along a perimeter with a specific radius, more terms in the Taylor series and angular modes in the Fourier series are needed for shorter waves. On the other hand, for the same incident wave, the outer the solutions are sought, more angular modes are needed to obtain the converged result of Fourier series. The comparison with the analytical solution based on the linear shallow-water equation by Homma [Geophys. Mag. 21 (1950) 199] is made for long wave incidence and excellent agreements are obtained. For long waves and waves in intermediate water depth, comparisons are made with other numerical results of the mild-slope equation and an equally good quality of agreement is achieved. © 2004 Elsevier B.V. All rights reserved.
Source Title: Coastal Engineering
ISSN: 03783839
DOI: 10.1016/j.coastaleng.2004.04.005
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Aug 6, 2020


checked on Aug 6, 2020

Page view(s)

checked on Aug 3, 2020

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.