Please use this identifier to cite or link to this item: https://doi.org/10.1109/JIOT.2022.3213693
Title: Radar-Based Soft Fall Detection Using Pattern Contour Vector
Authors: Bo Wang
Hao Zhang
Yong-Xin Guo 
Issue Date: 11-Oct-2022
Publisher: IEEE
Citation: Bo Wang, Hao Zhang, Yong-Xin Guo (2022-10-11). Radar-Based Soft Fall Detection Using Pattern Contour Vector. IEEE Internet of Things Journal 10 (3) : 2519 - 2527. ScholarBank@NUS Repository. https://doi.org/10.1109/JIOT.2022.3213693
Rights: CC0 1.0 Universal
Abstract: The Internet of Things (IoT) technologies reserves a large latent capacity in dealing with the emerging fall detection problem of elder people. The radar-based IoT methods are considered one of the optimum solutions to indoor fall detection problems. In this article, a millimeter-wave frequency modulated continuous wave (FMCW) radar-based fall detection method using the pattern contour vector (PCV) is proposed. The soft fall motions, which were not considered in most previous literature, are studied and analyzed. The motion attributes of velocity, intensity, and trajectory can distinguish sudden and soft fall motions from nonfall ones. PCVs of Doppler time (DT) map (DT-PCV), regional Power Burst Curve (rPBC), and PCVs of range time (RT) map (RT-PCV), interpreting the aforementioned attributes, respectively, are used as the inputs of the two convolutional neural networks (CNNs). The experimental results show that the proposed method can detect sudden and soft fall motions with high accuracy, sensitivity, and specificity.
Source Title: IEEE Internet of Things Journal
URI: https://scholarbank.nus.edu.sg/handle/10635/245126
ISSN: 2327-4662
DOI: 10.1109/JIOT.2022.3213693
Rights: CC0 1.0 Universal
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Radar-Based_Soft_Fall_Detection_Using_Pattern_Contour_Vector.pdf4.67 MBAdobe PDF

CLOSED

None
FINAL VERSION.PDF2.57 MBAdobe PDF

OPEN

Post-printView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons