Please use this identifier to cite or link to this item:
https://doi.org/10.1016/j.jmb.2010.05.033
Title: | The Mechanism of HIV-1 Tat-Directed Nucleic Acid Annealing Supports its Role in Reverse Transcription | Authors: | Boudier, C Storchak, R Sharma, KK Didier, P Follenius-Wund, A Muller, S Darlix, J-L Mely, Y |
Keywords: | Science & Technology Life Sciences & Biomedicine Biochemistry & Molecular Biology Tat protein NCp7 protein TAR fluorescence nucleic acid chaperone IMMUNODEFICIENCY-VIRUS TYPE-1 NUCLEOCAPSID PROTEIN NCP7 CTAR DNA CHAPERONE ACTIVITY STRAND TRANSFER COMPLEMENTARY SEQUENCE DESTABILIZING ACTIVITY VIRAL REPLICATION RNA TRANSACTIVATOR |
Issue Date: | 16-Jul-2010 | Publisher: | ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD | Citation: | Boudier, C, Storchak, R, Sharma, KK, Didier, P, Follenius-Wund, A, Muller, S, Darlix, J-L, Mely, Y (2010-07-16). The Mechanism of HIV-1 Tat-Directed Nucleic Acid Annealing Supports its Role in Reverse Transcription. JOURNAL OF MOLECULAR BIOLOGY 400 (3) : 487-501. ScholarBank@NUS Repository. https://doi.org/10.1016/j.jmb.2010.05.033 | Abstract: | The main function of the HIV-1 trans-activator of transcription (Tat protein) is to promote the transcription of the proviral DNA by the host RNA polymerase which leads to the synthesis of large quantities of the full length viral RNA. Tat is also thought to be involved in the reverse transcription (RTion) reaction by a still unknown mechanism. The recently reported nucleic acid annealing activity of Tat might explain, at least in part, its role in RTion. To further investigate this possibility, we carried out a fluorescence study on the mechanism by which the full length Tat protein (Tat(1-86)) and the basic peptide (44-61) direct the annealing of complementary viral DNA sequences representing the HIV-1 transactivation response element TAR, named dTAR and cTAR, essential for the early steps of RTion. Though both Tat(1-86) and the Tat(44-61) peptide were unable to melt the lower half of the cTAR stem, they strongly promoted cTAR/dTAR annealing through non-specific attraction between the peptide-bound oligonucleotides. Using cTAR and dTAR mutants, this Tat promoted-annealing was found to be nucleated through the thermally frayed 3'/5' termini, resulting in an intermediate with 12 intermolecular base pairs, which then converts into the final extended duplex. Moreover, we found that Tat(1-86) was as efficient as the nucleocapsid protein NCp7, a major nucleic acid chaperone of HIV-1, in promoting cTAR/dTAR annealing, and could act cooperatively with NCp7 during the annealing reaction. Taken together, our data are consistent with a role of Tat in the stimulation of the obligatory strand transfers during viral DNA synthesis by reverse transcriptase. | Source Title: | JOURNAL OF MOLECULAR BIOLOGY | URI: | https://scholarbank.nus.edu.sg/handle/10635/242866 | ISSN: | 0022-2836 1089-8638 |
DOI: | 10.1016/j.jmb.2010.05.033 |
Appears in Collections: | Staff Publications Elements |
Show full item record
Files in This Item:
File | Description | Size | Format | Access Settings | Version | |
---|---|---|---|---|---|---|
The mechanism of HIV-1 Tat-directed nucleic acid annealing supports its role in reverse transcription..pdf | Published version | 1.18 MB | Adobe PDF | CLOSED | None |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.