Please use this identifier to cite or link to this item:
https://doi.org/10.1080/01441647.2023.2171151
Title: | Spatiotemporal Correlation Modelling for Machine Learning-based Traffic State Predictions: State-of-the-art and Beyond | Authors: | Haipeng Cui Qiang Meng Teng Teck-Hou Xiaobo Yang |
Issue Date: | 31-Jan-2023 | Publisher: | Taylor & Francis | Citation: | Haipeng Cui, Qiang Meng, Teng Teck-Hou, Xiaobo Yang (2023-01-31). Spatiotemporal Correlation Modelling for Machine Learning-based Traffic State Predictions: State-of-the-art and Beyond. Transport Reviews 43 (4) : 780-804. ScholarBank@NUS Repository. https://doi.org/10.1080/01441647.2023.2171151 | Source Title: | Transport Reviews | URI: | https://scholarbank.nus.edu.sg/handle/10635/242100 | ISSN: | 0144-1647 | DOI: | 10.1080/01441647.2023.2171151 |
Appears in Collections: | Staff Publications Elements |
Show full item record
Files in This Item:
File | Description | Size | Format | Access Settings | Version | |
---|---|---|---|---|---|---|
10.108001441647.2023.2171151.zip | 3.71 MB | ZIP | OPEN | None | View/Download |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.