Please use this identifier to cite or link to this item: https://doi.org/10.1186/s13073-021-01000-y
Title: Predicting heterogeneity in clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures
Authors: Suphavilai, Chayaporn
Chia, Shumei
Sharma, Ankur
Tu, Lorna
Da Silva, Rafael Peres
Mongia, Aanchal
DasGupta, Ramanuj
Nagarajan, Niranjan 
Keywords: Combinatorial therapy
Drug response prediction
Recommender system
Single-cell RNA-seq
Tumor heterogeneity
Issue Date: 1-Dec-2021
Publisher: BioMed Central Ltd
Citation: Suphavilai, Chayaporn, Chia, Shumei, Sharma, Ankur, Tu, Lorna, Da Silva, Rafael Peres, Mongia, Aanchal, DasGupta, Ramanuj, Nagarajan, Niranjan (2021-12-01). Predicting heterogeneity in clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures. Genome Medicine 13 (1) : 189. ScholarBank@NUS Repository. https://doi.org/10.1186/s13073-021-01000-y
Rights: Attribution 4.0 International
Abstract: While understanding molecular heterogeneity across patients underpins precision oncology, there is increasing appreciation for taking intra-tumor heterogeneity into account. Based on large-scale analysis of cancer omics datasets, we highlight the importance of intra-tumor transcriptomic heterogeneity (ITTH) for predicting clinical outcomes. Leveraging single-cell RNA-seq (scRNA-seq) with a recommender system (CaDRReS-Sc), we show that heterogeneous gene-expression signatures can predict drug response with high accuracy (80%). Using patient-proximal cell lines, we established the validity of CaDRReS-Sc’s monotherapy (Pearson r>0.6) and combinatorial predictions targeting clone-specific vulnerabilities (>10% improvement). Applying CaDRReS-Sc to rapidly expanding scRNA-seq compendiums can serve as in silico screen to accelerate drug-repurposing studies. Availability: https://github.com/CSB5/CaDRReS-Sc. © 2021, The Author(s).
Source Title: Genome Medicine
URI: https://scholarbank.nus.edu.sg/handle/10635/233524
ISSN: 1756-994X
DOI: 10.1186/s13073-021-01000-y
Rights: Attribution 4.0 International
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1186_s13073-021-01000-y.pdf2.6 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons