Please use this identifier to cite or link to this item:
Title: Improving organic photovoltaic cells by forcing electrode work function well beyond onset of Ohmic transition
Authors: Zhao, Chao 
Tang, Cindy G. 
Seah, Zong-Long
Koh, Qi-Mian 
Chua, Lay-Lay 
Png, Rui-Qi 
Ho, Peter K. H. 
Issue Date: 14-Apr-2021
Publisher: Nature Research
Citation: Zhao, Chao, Tang, Cindy G., Seah, Zong-Long, Koh, Qi-Mian, Chua, Lay-Lay, Png, Rui-Qi, Ho, Peter K. H. (2021-04-14). Improving organic photovoltaic cells by forcing electrode work function well beyond onset of Ohmic transition. Nature Communications 12 (1) : 2250. ScholarBank@NUS Repository.
Rights: Attribution 4.0 International
Abstract: As electrode work function rises or falls sufficiently, the organic semiconductor/electrode contact reaches Fermi-level pinning, and then, few tenths of an electron-volt later, Ohmic transition. For organic solar cells, the resultant flattening of open-circuit voltage (Voc) and fill factor (FF) leads to a ‘plateau’ that maximizes power conversion efficiency (PCE). Here, we demonstrate this plateau in fact tilts slightly upwards. Thus, further driving of the electrode work function can continue to improve Voc and FF, albeit slowly. The first effect arises from the coercion of Fermi level up the semiconductor density-of-states in the case of ‘soft’ Fermi pinning, raising cell built-in potential. The second effect arises from the contact-induced enhancement of majority-carrier mobility. We exemplify these using PBDTTPD:PCBM solar cells, where PBDTTPD is a prototypal face-stacked semiconductor, and where work function of the hole collection layer is systematically ‘tuned’ from onset of Fermi-level pinning, through Ohmic transition, and well into the Ohmic regime. © 2021, The Author(s).
Source Title: Nature Communications
ISSN: 2041-1723
DOI: 10.1038/s41467-021-22358-y
Rights: Attribution 4.0 International
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467-021-22358-y.pdf1.35 MBAdobe PDF




checked on Nov 29, 2022

Page view(s)

checked on Dec 1, 2022

Google ScholarTM



This item is licensed under a Creative Commons License Creative Commons