Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-021-22358-y
DC FieldValue
dc.titleImproving organic photovoltaic cells by forcing electrode work function well beyond onset of Ohmic transition
dc.contributor.authorZhao, Chao
dc.contributor.authorTang, Cindy G.
dc.contributor.authorSeah, Zong-Long
dc.contributor.authorKoh, Qi-Mian
dc.contributor.authorChua, Lay-Lay
dc.contributor.authorPng, Rui-Qi
dc.contributor.authorHo, Peter K. H.
dc.date.accessioned2022-10-13T06:46:36Z
dc.date.available2022-10-13T06:46:36Z
dc.date.issued2021-04-14
dc.identifier.citationZhao, Chao, Tang, Cindy G., Seah, Zong-Long, Koh, Qi-Mian, Chua, Lay-Lay, Png, Rui-Qi, Ho, Peter K. H. (2021-04-14). Improving organic photovoltaic cells by forcing electrode work function well beyond onset of Ohmic transition. Nature Communications 12 (1) : 2250. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-021-22358-y
dc.identifier.issn2041-1723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/233066
dc.description.abstractAs electrode work function rises or falls sufficiently, the organic semiconductor/electrode contact reaches Fermi-level pinning, and then, few tenths of an electron-volt later, Ohmic transition. For organic solar cells, the resultant flattening of open-circuit voltage (Voc) and fill factor (FF) leads to a ‘plateau’ that maximizes power conversion efficiency (PCE). Here, we demonstrate this plateau in fact tilts slightly upwards. Thus, further driving of the electrode work function can continue to improve Voc and FF, albeit slowly. The first effect arises from the coercion of Fermi level up the semiconductor density-of-states in the case of ‘soft’ Fermi pinning, raising cell built-in potential. The second effect arises from the contact-induced enhancement of majority-carrier mobility. We exemplify these using PBDTTPD:PCBM solar cells, where PBDTTPD is a prototypal face-stacked semiconductor, and where work function of the hole collection layer is systematically ‘tuned’ from onset of Fermi-level pinning, through Ohmic transition, and well into the Ohmic regime. © 2021, The Author(s).
dc.publisherNature Research
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2021
dc.typeArticle
dc.contributor.departmentPHYSICS
dc.contributor.departmentCHEMISTRY
dc.contributor.departmentPHYSICS
dc.description.doi10.1038/s41467-021-22358-y
dc.description.sourcetitleNature Communications
dc.description.volume12
dc.description.issue1
dc.description.page2250
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467-021-22358-y.pdf1.35 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons