Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.neuroimage.2020.117695
Title: High-resolution connectomic fingerprints: Mapping neural identity and behavior
Authors: Mansour L, S.
Tian, Ye
Yeo, B. T. Thomas 
Cropley, Vanessa
Zalesky, Andrew
Keywords: Brain connectivity
Connectome fingerprinting
Cortical gradients
Human connectome project
Multi-modal data
Neural behavior prediction
Issue Date: 1-Apr-2021
Publisher: Academic Press Inc.
Citation: Mansour L, S., Tian, Ye, Yeo, B. T. Thomas, Cropley, Vanessa, Zalesky, Andrew (2021-04-01). High-resolution connectomic fingerprints: Mapping neural identity and behavior. NeuroImage 229 : 117695. ScholarBank@NUS Repository. https://doi.org/10.1016/j.neuroimage.2020.117695
Rights: Attribution 4.0 International
Abstract: Connectomes are typically mapped at low resolution based on a specific brain parcellation atlas. Here, we investigate high-resolution connectomes independent of any atlas, propose new methodologies to facilitate their mapping and demonstrate their utility in predicting behavior and identifying individuals. Using structural, functional and diffusion-weighted MRI acquired in 1000 healthy adults, we aimed to map the cortical correlates of identity and behavior at ultra-high spatial resolution. Using methods based on sparse matrix representations, we propose a computationally feasible high-resolution connectomic approach that improves neural fingerprinting and behavior prediction. Using this high-resolution approach, we find that the multimodal cortical gradients of individual uniqueness reside in the association cortices. Furthermore, our analyses identified a striking dichotomy between the facets of a person's neural identity that best predict their behavior and cognition, compared to those that best differentiate them from other individuals. Functional connectivity was one of the most accurate predictors of behavior, yet resided among the weakest differentiators of identity; whereas the converse was found for morphological properties, such as cortical curvature. This study provides new insights into the neural basis of personal identity and new tools to facilitate ultra-high-resolution connectomics. © 2021 The Author(s)
Source Title: NeuroImage
URI: https://scholarbank.nus.edu.sg/handle/10635/232815
ISSN: 1053-8119
DOI: 10.1016/j.neuroimage.2020.117695
Rights: Attribution 4.0 International
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1016_j_neuroimage_2020_117695.pdf3.12 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons