Please use this identifier to cite or link to this item: https://doi.org/10.1038/s42003-020-01559-z
Title: Deep learning identifies partially overlapping subnetworks in the human social brain
Authors: Kiesow, Hannah
Spreng, R. Nathan
Holmes, Avram J.
Chakravarty, M. Mallar
Marquand, Andre F.
Yeo, B. T. Thomas 
Bzdok, Danilo
Issue Date: 14-Jan-2021
Publisher: Nature Research
Citation: Kiesow, Hannah, Spreng, R. Nathan, Holmes, Avram J., Chakravarty, M. Mallar, Marquand, Andre F., Yeo, B. T. Thomas, Bzdok, Danilo (2021-01-14). Deep learning identifies partially overlapping subnetworks in the human social brain. Communications Biology 4 (1) : 65. ScholarBank@NUS Repository. https://doi.org/10.1038/s42003-020-01559-z
Rights: Attribution 4.0 International
Abstract: Complex social interplay is a defining property of the human species. In social neuroscience, many experiments have sought to first define and then locate ‘perspective taking’, ‘empathy’, and other psychological concepts to specific brain circuits. Seldom, bottom-up studies were conducted to first identify explanatory patterns of brain variation, which are then related to psychological concepts; perhaps due to a lack of large population datasets. In this spirit, we performed a systematic de-construction of social brain morphology into its elementary building blocks, involving ~10,000 UK Biobank participants. We explored coherent representations of structural co-variation at population scale within a recent social brain atlas, by translating autoencoder neural networks from deep learning. The learned subnetworks revealed essential patterns of structural relationships between social brain regions, with the nucleus accumbens, medial prefrontal cortex, and temporoparietal junction embedded at the core. Some of the uncovered subnetworks contributed to predicting examined social traits in general, while other subnetworks helped predict specific facets of social functioning, such as the experience of social isolation. As a consequence of our population-level evidence, spatially overlapping subsystems of the social brain probably relate to interindividual differences in everyday social life. © 2021, The Author(s).
Source Title: Communications Biology
URI: https://scholarbank.nus.edu.sg/handle/10635/232358
ISSN: 2399-3642
DOI: 10.1038/s42003-020-01559-z
Rights: Attribution 4.0 International
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s42003-020-01559-z.pdf1.99 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons