Please use this identifier to cite or link to this item:
https://doi.org/10.1088/1674-1056/ac0521
Title: | Geometry of time-dependent PT -symmetric quantum mechanics | Authors: | Zhang, DJ Wang, QH Gong, J |
Issue Date: | 1-Oct-2021 | Publisher: | IOP Publishing | Citation: | Zhang, DJ, Wang, QH, Gong, J (2021-10-01). Geometry of time-dependent PT -symmetric quantum mechanics. Chinese Physics B 30 (10) : 105202-105202. ScholarBank@NUS Repository. https://doi.org/10.1088/1674-1056/ac0521 | Abstract: | A new type of quantum theory known as time-dependent PT -symmetric quantum mechanics has received much attention recently. It has a conceptually intriguing feature of equipping the Hilbert space of a PT -symmetric system with a time-varying inner product. In this work, we explore the geometry of time-dependent PT -symmetric quantum mechanics. We find that a geometric phase can emerge naturally from the cyclic evolution of a PT -symmetric system, and further formulate a series of related differential-geometry concepts, including connection, curvature, parallel transport, metric tensor, and quantum geometric tensor. These findings constitute a useful, perhaps indispensible, tool to investigate geometric properties of PT -symmetric systems with time-varying system's parameters. To exemplify the application of our findings, we show that the unconventional geometric phase [Phys. Rev. Lett. 91 187902 (2003)], which is the sum of a geometric phase and a dynamical phase proportional to the geometric phase, can be expressed as a single geometric phase unveiled in this work. | Source Title: | Chinese Physics B | URI: | https://scholarbank.nus.edu.sg/handle/10635/226615 | ISSN: | 1674-1056 2058-3834 |
DOI: | 10.1088/1674-1056/ac0521 |
Appears in Collections: | Elements Staff Publications |
Show full item record
Files in This Item:
File | Description | Size | Format | Access Settings | Version | |
---|---|---|---|---|---|---|
cpb_20210601.pdf | 426.85 kB | Adobe PDF | OPEN | Pre-print | View/Download |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.