Please use this identifier to cite or link to this item: https://doi.org/10.3934/krm.2018040
Title: Uniform error estimates of a finite difference method for the Klein-Gordon-Schrödinger system in the nonrelativistic and massless limit regimes
Authors: Bao, W. 
Su, C. 
Keywords: Error estimates
Finite difference method
Highly oscillatory
Klein-Gordon-Schrödinger equations
Massless limit
Nonrelativistic limit
Schrödinger-Yukawa equations
Issue Date: 2018
Publisher: American Institute of Mathematical Sciences
Citation: Bao, W., Su, C. (2018). Uniform error estimates of a finite difference method for the Klein-Gordon-Schrödinger system in the nonrelativistic and massless limit regimes. Kinetic and Related Models 11 (4) : 1037-1062. ScholarBank@NUS Repository. https://doi.org/10.3934/krm.2018040
Rights: Attribution 4.0 International
Abstract: We establish a uniform error estimate of a finite difference method for the Klein-Gordon-Schrödinger (KGS) equations with two dimensionless parameters 0<γ≤1 and 0<ε≤1, which are the mass ratio and inversely proportional to the speed of light, respectively. In the simultaneously nonrelativistic and massless limit regimes, i.e., γ∼ε and ε→0+, the KGS equations converge singularly to the Schrödinger-Yukawa (SY) equations. When 0<ε≪1, due to the perturbation of the wave operator and/or the incompatibility of the initial data, which is described by two parameters α≥0 and β≥−1, the solution of the KGS equations oscillates in time with O(ε)-wavelength, which requires harsh meshing strategy for classical numerical methods. We propose a uniformly accurate method based on two key points: (ⅰ) reformulating KGS system into an asymptotic consistent formulation, and (ⅱ) applying an integral approximation of the oscillatory term. Using the energy method and the limiting equation via the SY equations with an oscillatory potential, we establish two independent error bounds at O(h2+τ2/ε) and O(h2+τ2+τεα∗+ε1+α∗) with h mesh size, τ time step and α∗=min{1,α,1+β}. This implies that the method converges uniformly and optimally with quadratic convergence rate in space and uniformly in time at O(τ4/3) and O(τ1+α∗2+α∗) for well-prepared (α∗=1) and ill-prepared (0≤α∗<1) initial data, respectively. Thus the ε-scalability of the method is τ=O(1) and h=O(1) for 0<ε≤1, which is significantly better than classical methods. Numerical results are reported to confirm our error bounds. Finally, the method is applied to study the convergence rates of KGS equations to its limiting models in the simultaneously nonrelativistic and massless limit regimes. © American Institute of Mathematical Sciences.
Source Title: Kinetic and Related Models
URI: https://scholarbank.nus.edu.sg/handle/10635/210895
ISSN: 19375093
DOI: 10.3934/krm.2018040
Rights: Attribution 4.0 International
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_3934_krm_2018040.pdf2.61 MBAdobe PDF

OPEN

NoneView/Download

SCOPUSTM   
Citations

3
checked on Jan 26, 2023

Page view(s)

79
checked on Jan 26, 2023

Download(s)

1
checked on Jan 26, 2023

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons