Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-019-10448-x
Title: Coherent diffractive imaging of microtubules using an X-ray laser
Authors: Brändén, G.
Hammarin, G.
Harimoorthy, R.
Johansson, A.
Arnlund, D.
Malmerberg, E.
Barty, A.
Tångefjord, S.
Berntsen, P.
DePonte, D.P.
Seuring, C.
White, T.A.
Stellato, F.
Bean, R.
Beyerlein, K.R.
Chavas, L.M.G.
Fleckenstein, H.
Gati, C.
Ghoshdastider, U.
Gumprecht, L.
Oberthür, D.
Popp, D.
Seibert, M.
Tilp, T.
Messerschmidt, M.
Williams, G.J.
Loh, N.D. 
Chapman, H.N.
Zwart, P.
Liang, M.
Boutet, S.
Robinson, R.C. 
Neutze, R.
Issue Date: 2019
Publisher: Nature Publishing Group
Citation: Brändén, G., Hammarin, G., Harimoorthy, R., Johansson, A., Arnlund, D., Malmerberg, E., Barty, A., Tångefjord, S., Berntsen, P., DePonte, D.P., Seuring, C., White, T.A., Stellato, F., Bean, R., Beyerlein, K.R., Chavas, L.M.G., Fleckenstein, H., Gati, C., Ghoshdastider, U., Gumprecht, L., Oberthür, D., Popp, D., Seibert, M., Tilp, T., Messerschmidt, M., Williams, G.J., Loh, N.D., Chapman, H.N., Zwart, P., Liang, M., Boutet, S., Robinson, R.C., Neutze, R. (2019). Coherent diffractive imaging of microtubules using an X-ray laser. Nature Communications 10 (1) : 2589. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-019-10448-x
Rights: Attribution 4.0 International
Abstract: X-ray free electron lasers (XFELs) create new possibilities for structural studies of biological objects that extend beyond what is possible with synchrotron radiation. Serial femtosecond crystallography has allowed high-resolution structures to be determined from micro-meter sized crystals, whereas single particle coherent X-ray imaging requires development to extend the resolution beyond a few tens of nanometers. Here we describe an intermediate approach: the XFEL imaging of biological assemblies with helical symmetry. We collected X-ray scattering images from samples of microtubules injected across an XFEL beam using a liquid microjet, sorted these images into class averages, merged these data into a diffraction pattern extending to 2 nm resolution, and reconstructed these data into a projection image of the microtubule. Details such as the 4 nm tubulin monomer became visible in this reconstruction. These results illustrate the potential of single-molecule X-ray imaging of biological assembles with helical symmetry at room temperature. © 2019, The Author(s).
Source Title: Nature Communications
URI: https://scholarbank.nus.edu.sg/handle/10635/210697
ISSN: 20411723
DOI: 10.1038/s41467-019-10448-x
Rights: Attribution 4.0 International
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467-019-10448-x.pdf3.82 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons