Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-019-10448-x
DC FieldValue
dc.titleCoherent diffractive imaging of microtubules using an X-ray laser
dc.contributor.authorBrändén, G.
dc.contributor.authorHammarin, G.
dc.contributor.authorHarimoorthy, R.
dc.contributor.authorJohansson, A.
dc.contributor.authorArnlund, D.
dc.contributor.authorMalmerberg, E.
dc.contributor.authorBarty, A.
dc.contributor.authorTångefjord, S.
dc.contributor.authorBerntsen, P.
dc.contributor.authorDePonte, D.P.
dc.contributor.authorSeuring, C.
dc.contributor.authorWhite, T.A.
dc.contributor.authorStellato, F.
dc.contributor.authorBean, R.
dc.contributor.authorBeyerlein, K.R.
dc.contributor.authorChavas, L.M.G.
dc.contributor.authorFleckenstein, H.
dc.contributor.authorGati, C.
dc.contributor.authorGhoshdastider, U.
dc.contributor.authorGumprecht, L.
dc.contributor.authorOberthür, D.
dc.contributor.authorPopp, D.
dc.contributor.authorSeibert, M.
dc.contributor.authorTilp, T.
dc.contributor.authorMesserschmidt, M.
dc.contributor.authorWilliams, G.J.
dc.contributor.authorLoh, N.D.
dc.contributor.authorChapman, H.N.
dc.contributor.authorZwart, P.
dc.contributor.authorLiang, M.
dc.contributor.authorBoutet, S.
dc.contributor.authorRobinson, R.C.
dc.contributor.authorNeutze, R.
dc.date.accessioned2021-12-16T07:44:37Z
dc.date.available2021-12-16T07:44:37Z
dc.date.issued2019
dc.identifier.citationBrändén, G., Hammarin, G., Harimoorthy, R., Johansson, A., Arnlund, D., Malmerberg, E., Barty, A., Tångefjord, S., Berntsen, P., DePonte, D.P., Seuring, C., White, T.A., Stellato, F., Bean, R., Beyerlein, K.R., Chavas, L.M.G., Fleckenstein, H., Gati, C., Ghoshdastider, U., Gumprecht, L., Oberthür, D., Popp, D., Seibert, M., Tilp, T., Messerschmidt, M., Williams, G.J., Loh, N.D., Chapman, H.N., Zwart, P., Liang, M., Boutet, S., Robinson, R.C., Neutze, R. (2019). Coherent diffractive imaging of microtubules using an X-ray laser. Nature Communications 10 (1) : 2589. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-019-10448-x
dc.identifier.issn20411723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/210697
dc.description.abstractX-ray free electron lasers (XFELs) create new possibilities for structural studies of biological objects that extend beyond what is possible with synchrotron radiation. Serial femtosecond crystallography has allowed high-resolution structures to be determined from micro-meter sized crystals, whereas single particle coherent X-ray imaging requires development to extend the resolution beyond a few tens of nanometers. Here we describe an intermediate approach: the XFEL imaging of biological assemblies with helical symmetry. We collected X-ray scattering images from samples of microtubules injected across an XFEL beam using a liquid microjet, sorted these images into class averages, merged these data into a diffraction pattern extending to 2 nm resolution, and reconstructed these data into a projection image of the microtubule. Details such as the 4 nm tubulin monomer became visible in this reconstruction. These results illustrate the potential of single-molecule X-ray imaging of biological assembles with helical symmetry at room temperature. © 2019, The Author(s).
dc.publisherNature Publishing Group
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2019
dc.typeArticle
dc.contributor.departmentPHYSICS
dc.contributor.departmentBIOCHEMISTRY
dc.description.doi10.1038/s41467-019-10448-x
dc.description.sourcetitleNature Communications
dc.description.volume10
dc.description.issue1
dc.description.page2589
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467-019-10448-x.pdf3.82 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons