Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/210338
Title: Computational Feasibility of Multi-objective Optimal Design Techniques for Grid-Connected Multi-cell Solid-State-Transformers
Authors: JAYDEEP SAHA 
NAGA BRAHMENDRA YADAV GORLA 
ARAVINTH SUBRAMANIAM 
Panda, S.K. 
Keywords: Computational Expense
Converter Model
Design Optimization
Solid-State-Transformer (SST)
Issue Date: 13-Nov-2021
Publisher: IEEE
Citation: JAYDEEP SAHA, NAGA BRAHMENDRA YADAV GORLA, ARAVINTH SUBRAMANIAM, Panda, S.K. (2021-11-13). Computational Feasibility of Multi-objective Optimal Design Techniques for Grid-Connected Multi-cell Solid-State-Transformers. ScholarBank@NUS Repository.
Rights: CC0 1.0 Universal
Abstract: Despite some recent efforts towards multi-objective design optimization of multilevel converters, design optimization of solid-state-transformers (SSTs) are not presented much in the literature mainly because of the lack of computationally feasible techniques. This paper is dedicated towards a computational feasibility study of multi-objective design optimization techniques for medium-voltage (MV) grid-connected SSTs. After defining the application and scope of SST design optimization problem, a brief description of the possible solution techniques are discussed which shows the merits of semi-numerical/hybrid design optimization techniques. Subsequently, a machine learning (ML) aided hybrid optimization technique is executed for a 15 kVA single-stage SiC-based SST design. Suitable component modelling is presented and a strong agreement is observed between theoretical optimization and experimental results. Finally, a comparative evaluation of the analytical, numerical, standalone hybrid and ML-aided hybrid optimization techniques (deployed for the same 15 kVA SiC-based SST design) reveals that the ML-aided hybrid strategy is best suited for SST design optimization as it requires feasible computational time for <5% error.
URI: https://scholarbank.nus.edu.sg/handle/10635/210338
Rights: CC0 1.0 Universal
Appears in Collections:Staff Publications
Elements

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
IECON_Opt-Final_PDFA.pdfComputational Feasibility of Multi-objective Optimal Design Techniques for Grid-Connected Multi-cell Solid-State-Transformers1.24 MBAdobe PDF

OPEN

Post-printView/Download

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons