Please use this identifier to cite or link to this item: https://doi.org/10.3390/ijms21197102
Title: Finding new molecular targets of familiar natural products using in silico target prediction
Authors: Mayr, F.
Möller, G.
Garscha, U.
Fischer, J.
Castaño, P.R.
Inderbinen, S.G.
Temml, V.
Waltenberger, B.
Schwaiger, S.
Hartmann, R.W.
Gege, C.
Martens, S.
Odermatt, A.
Pandey, A.V.
Werz, O.
Adamski, J. 
Stuppner, H.
Schuster, D.
Keywords: Dihydrochalcones
In silico target prediction
Polypharmacology
SEA
SuperPred
SwissTargetPrediction
Virtual screening
Issue Date: 2020
Publisher: MDPI AG
Citation: Mayr, F., Möller, G., Garscha, U., Fischer, J., Castaño, P.R., Inderbinen, S.G., Temml, V., Waltenberger, B., Schwaiger, S., Hartmann, R.W., Gege, C., Martens, S., Odermatt, A., Pandey, A.V., Werz, O., Adamski, J., Stuppner, H., Schuster, D. (2020). Finding new molecular targets of familiar natural products using in silico target prediction. International Journal of Molecular Sciences 21 (19) : 1-18. ScholarBank@NUS Repository. https://doi.org/10.3390/ijms21197102
Rights: Attribution 4.0 International
Abstract: Natural products comprise a rich reservoir for innovative drug leads and are a constant source of bioactive compounds. To find pharmacological targets for new or already known natural products using modern computer-aided methods is a current endeavor in drug discovery. Nature’s treasures, however, could be used more effectively. Yet, reliable pipelines for the large-scale target prediction of natural products are still rare. We developed an in silico workflow consisting of four independent, stand-alone target prediction tools and evaluated its performance on dihydrochalcones (DHCs)—a well-known class of natural products. Thereby, we revealed four previously unreported protein targets for DHCs, namely 5-lipoxygenase, cyclooxygenase-1, 17?-hydroxysteroid dehydrogenase 3, and aldo-keto reductase 1C3. Moreover, we provide a thorough strategy on how to perform computational target predictions and guidance on using the respective tools. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
Source Title: International Journal of Molecular Sciences
URI: https://scholarbank.nus.edu.sg/handle/10635/199700
ISSN: 1661-6596
DOI: 10.3390/ijms21197102
Rights: Attribution 4.0 International
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_3390_ijms21197102.pdf2.43 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons