Please use this identifier to cite or link to this item: https://doi.org/10.3390/ijms21197102
DC FieldValue
dc.titleFinding new molecular targets of familiar natural products using in silico target prediction
dc.contributor.authorMayr, F.
dc.contributor.authorMöller, G.
dc.contributor.authorGarscha, U.
dc.contributor.authorFischer, J.
dc.contributor.authorCastaño, P.R.
dc.contributor.authorInderbinen, S.G.
dc.contributor.authorTemml, V.
dc.contributor.authorWaltenberger, B.
dc.contributor.authorSchwaiger, S.
dc.contributor.authorHartmann, R.W.
dc.contributor.authorGege, C.
dc.contributor.authorMartens, S.
dc.contributor.authorOdermatt, A.
dc.contributor.authorPandey, A.V.
dc.contributor.authorWerz, O.
dc.contributor.authorAdamski, J.
dc.contributor.authorStuppner, H.
dc.contributor.authorSchuster, D.
dc.date.accessioned2021-08-27T02:36:00Z
dc.date.available2021-08-27T02:36:00Z
dc.date.issued2020
dc.identifier.citationMayr, F., Möller, G., Garscha, U., Fischer, J., Castaño, P.R., Inderbinen, S.G., Temml, V., Waltenberger, B., Schwaiger, S., Hartmann, R.W., Gege, C., Martens, S., Odermatt, A., Pandey, A.V., Werz, O., Adamski, J., Stuppner, H., Schuster, D. (2020). Finding new molecular targets of familiar natural products using in silico target prediction. International Journal of Molecular Sciences 21 (19) : 1-18. ScholarBank@NUS Repository. https://doi.org/10.3390/ijms21197102
dc.identifier.issn1661-6596
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/199700
dc.description.abstractNatural products comprise a rich reservoir for innovative drug leads and are a constant source of bioactive compounds. To find pharmacological targets for new or already known natural products using modern computer-aided methods is a current endeavor in drug discovery. Nature’s treasures, however, could be used more effectively. Yet, reliable pipelines for the large-scale target prediction of natural products are still rare. We developed an in silico workflow consisting of four independent, stand-alone target prediction tools and evaluated its performance on dihydrochalcones (DHCs)—a well-known class of natural products. Thereby, we revealed four previously unreported protein targets for DHCs, namely 5-lipoxygenase, cyclooxygenase-1, 17?-hydroxysteroid dehydrogenase 3, and aldo-keto reductase 1C3. Moreover, we provide a thorough strategy on how to perform computational target predictions and guidance on using the respective tools. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
dc.publisherMDPI AG
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2020
dc.subjectDihydrochalcones
dc.subjectIn silico target prediction
dc.subjectPolypharmacology
dc.subjectSEA
dc.subjectSuperPred
dc.subjectSwissTargetPrediction
dc.subjectVirtual screening
dc.typeArticle
dc.contributor.departmentBIOCHEMISTRY
dc.description.doi10.3390/ijms21197102
dc.description.sourcetitleInternational Journal of Molecular Sciences
dc.description.volume21
dc.description.issue19
dc.description.page1-18
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_3390_ijms21197102.pdf2.43 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons