Please use this identifier to cite or link to this item:
https://doi.org/10.3390/ijms21197102
DC Field | Value | |
---|---|---|
dc.title | Finding new molecular targets of familiar natural products using in silico target prediction | |
dc.contributor.author | Mayr, F. | |
dc.contributor.author | Möller, G. | |
dc.contributor.author | Garscha, U. | |
dc.contributor.author | Fischer, J. | |
dc.contributor.author | Castaño, P.R. | |
dc.contributor.author | Inderbinen, S.G. | |
dc.contributor.author | Temml, V. | |
dc.contributor.author | Waltenberger, B. | |
dc.contributor.author | Schwaiger, S. | |
dc.contributor.author | Hartmann, R.W. | |
dc.contributor.author | Gege, C. | |
dc.contributor.author | Martens, S. | |
dc.contributor.author | Odermatt, A. | |
dc.contributor.author | Pandey, A.V. | |
dc.contributor.author | Werz, O. | |
dc.contributor.author | Adamski, J. | |
dc.contributor.author | Stuppner, H. | |
dc.contributor.author | Schuster, D. | |
dc.date.accessioned | 2021-08-27T02:36:00Z | |
dc.date.available | 2021-08-27T02:36:00Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Mayr, F., Möller, G., Garscha, U., Fischer, J., Castaño, P.R., Inderbinen, S.G., Temml, V., Waltenberger, B., Schwaiger, S., Hartmann, R.W., Gege, C., Martens, S., Odermatt, A., Pandey, A.V., Werz, O., Adamski, J., Stuppner, H., Schuster, D. (2020). Finding new molecular targets of familiar natural products using in silico target prediction. International Journal of Molecular Sciences 21 (19) : 1-18. ScholarBank@NUS Repository. https://doi.org/10.3390/ijms21197102 | |
dc.identifier.issn | 1661-6596 | |
dc.identifier.uri | https://scholarbank.nus.edu.sg/handle/10635/199700 | |
dc.description.abstract | Natural products comprise a rich reservoir for innovative drug leads and are a constant source of bioactive compounds. To find pharmacological targets for new or already known natural products using modern computer-aided methods is a current endeavor in drug discovery. Nature’s treasures, however, could be used more effectively. Yet, reliable pipelines for the large-scale target prediction of natural products are still rare. We developed an in silico workflow consisting of four independent, stand-alone target prediction tools and evaluated its performance on dihydrochalcones (DHCs)—a well-known class of natural products. Thereby, we revealed four previously unreported protein targets for DHCs, namely 5-lipoxygenase, cyclooxygenase-1, 17?-hydroxysteroid dehydrogenase 3, and aldo-keto reductase 1C3. Moreover, we provide a thorough strategy on how to perform computational target predictions and guidance on using the respective tools. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. | |
dc.publisher | MDPI AG | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.source | Scopus OA2020 | |
dc.subject | Dihydrochalcones | |
dc.subject | In silico target prediction | |
dc.subject | Polypharmacology | |
dc.subject | SEA | |
dc.subject | SuperPred | |
dc.subject | SwissTargetPrediction | |
dc.subject | Virtual screening | |
dc.type | Article | |
dc.contributor.department | BIOCHEMISTRY | |
dc.description.doi | 10.3390/ijms21197102 | |
dc.description.sourcetitle | International Journal of Molecular Sciences | |
dc.description.volume | 21 | |
dc.description.issue | 19 | |
dc.description.page | 1-18 | |
Appears in Collections: | Elements Staff Publications |
Show simple item record
Files in This Item:
File | Description | Size | Format | Access Settings | Version | |
---|---|---|---|---|---|---|
10_3390_ijms21197102.pdf | 2.43 MB | Adobe PDF | OPEN | None | View/Download |
This item is licensed under a Creative Commons License