Please use this identifier to cite or link to this item: https://doi.org/10.1088/1367-2630/aa62ba
Title: Entropic equality for worst-case work at any protocol speed
Authors: Dahlsten, O.C.O
Choi, M.-S
Braun, D
Garner, A.J.P 
Halpern, N.Y
Vedral, V 
Keywords: Entropy
Hamiltonians
Quantum optics
Quantum theory
Statistical mechanics
Crooks fluctuation theorem
Finite-dimensional quantum systems
Initial state
Max entropy
Non-equilibrium statistical mechanics
Single shots
Time-dependent Hamiltonians
Von Neumann entropy
Mechanics
Issue Date: 2017
Publisher: Institute of Physics Publishing
Citation: Dahlsten, O.C.O, Choi, M.-S, Braun, D, Garner, A.J.P, Halpern, N.Y, Vedral, V (2017). Entropic equality for worst-case work at any protocol speed. New Journal of Physics 19 (4) : 43013. ScholarBank@NUS Repository. https://doi.org/10.1088/1367-2630/aa62ba
Rights: Attribution 4.0 International
Abstract: We derive an equality for non-equilibrium statistical mechanics in finite-dimensional quantum systems. The equality concerns the worst-case work output of a time-dependent Hamiltonian protocol in the presence of a Markovian heat bath. It has the form 'worst-case work = penalty - optimum'. The equality holds for all rates of changing the Hamiltonian and can be used to derive the optimum by setting the penalty to 0. The optimum term contains the max entropy of the initial state, rather than the von Neumann entropy, thus recovering recent results from single-shot statistical mechanics. Energy coherences can arise during the protocol but are assumed not to be present initially. We apply the equality to an electron box. © 2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
Source Title: New Journal of Physics
URI: https://scholarbank.nus.edu.sg/handle/10635/179212
ISSN: 13672630
DOI: 10.1088/1367-2630/aa62ba
Rights: Attribution 4.0 International
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1088_1367-2630_aa62ba.pdf1.08 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons