Please use this identifier to cite or link to this item:
https://doi.org/10.1038/s41467-017-02469-1
Title: | Membrane shape-mediated wave propagation of cortical protein dynamics | Authors: | Wu, Z Su, M Tong, C Wu, M Liu, J |
Keywords: | cell cytoplasm experimental study machinery membrane numerical model protein shape theoretical study wave propagation brain cortex cytoplasm diffusion rhythm signal transduction theoretical study travel velocity animal cell membrane cell shape physiology rat theoretical model tumor cell line actin membrane protein protein Cdc42 Actins Animals cdc42 GTP-Binding Protein Cell Line, Tumor Cell Membrane Cell Shape Membrane Proteins Models, Theoretical Rats |
Issue Date: | 2018 | Publisher: | Nature Publishing Group | Citation: | Wu, Z, Su, M, Tong, C, Wu, M, Liu, J (2018). Membrane shape-mediated wave propagation of cortical protein dynamics. Nature Communications 9 (1) : 136. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-017-02469-1 | Rights: | Attribution 4.0 International | Abstract: | Immune cells exhibit stimulation-dependent traveling waves in the cortex, much faster than typical cortical actin waves. These waves reflect rhythmic assembly of both actin machinery and peripheral membrane proteins such as F-BAR domain-containing proteins. Combining theory and experiments, we develop a mechanochemical feedback model involving membrane shape changes and F-BAR proteins that render the cortex an interesting dynamical system. We show that such cortical dynamics manifests itself as ultrafast traveling waves of cortical proteins, in which the curvature sensitivity-driven feedback always constrains protein lateral diffusion in wave propagation. The resulting protein wave propagation mainly reflects the spatial gradient in the timing of local protein recruitment from cytoplasm. We provide evidence that membrane undulations accompany these protein waves and potentiate their propagation. Therefore, membrane shape change and protein curvature sensitivity may have underappreciated roles in setting high-speed cortical signal transduction rhythms. © 2017 The Author(s). | Source Title: | Nature Communications | URI: | https://scholarbank.nus.edu.sg/handle/10635/178530 | ISSN: | 2041-1723 | DOI: | 10.1038/s41467-017-02469-1 | Rights: | Attribution 4.0 International |
Appears in Collections: | Staff Publications Elements |
Show full item record
Files in This Item:
File | Description | Size | Format | Access Settings | Version | |
---|---|---|---|---|---|---|
10_1038_s41467-017-02469-1.pdf | 3.31 MB | Adobe PDF | OPEN | None | View/Download |
This item is licensed under a Creative Commons License