Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-017-02469-1
DC FieldValue
dc.titleMembrane shape-mediated wave propagation of cortical protein dynamics
dc.contributor.authorWu, Z
dc.contributor.authorSu, M
dc.contributor.authorTong, C
dc.contributor.authorWu, M
dc.contributor.authorLiu, J
dc.date.accessioned2020-10-20T10:11:01Z
dc.date.available2020-10-20T10:11:01Z
dc.date.issued2018
dc.identifier.citationWu, Z, Su, M, Tong, C, Wu, M, Liu, J (2018). Membrane shape-mediated wave propagation of cortical protein dynamics. Nature Communications 9 (1) : 136. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-017-02469-1
dc.identifier.issn2041-1723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/178530
dc.description.abstractImmune cells exhibit stimulation-dependent traveling waves in the cortex, much faster than typical cortical actin waves. These waves reflect rhythmic assembly of both actin machinery and peripheral membrane proteins such as F-BAR domain-containing proteins. Combining theory and experiments, we develop a mechanochemical feedback model involving membrane shape changes and F-BAR proteins that render the cortex an interesting dynamical system. We show that such cortical dynamics manifests itself as ultrafast traveling waves of cortical proteins, in which the curvature sensitivity-driven feedback always constrains protein lateral diffusion in wave propagation. The resulting protein wave propagation mainly reflects the spatial gradient in the timing of local protein recruitment from cytoplasm. We provide evidence that membrane undulations accompany these protein waves and potentiate their propagation. Therefore, membrane shape change and protein curvature sensitivity may have underappreciated roles in setting high-speed cortical signal transduction rhythms. © 2017 The Author(s).
dc.publisherNature Publishing Group
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectcell
dc.subjectcytoplasm
dc.subjectexperimental study
dc.subjectmachinery
dc.subjectmembrane
dc.subjectnumerical model
dc.subjectprotein
dc.subjectshape
dc.subjecttheoretical study
dc.subjectwave propagation
dc.subjectbrain cortex
dc.subjectcytoplasm
dc.subjectdiffusion
dc.subjectrhythm
dc.subjectsignal transduction
dc.subjecttheoretical study
dc.subjecttravel
dc.subjectvelocity
dc.subjectanimal
dc.subjectcell membrane
dc.subjectcell shape
dc.subjectphysiology
dc.subjectrat
dc.subjecttheoretical model
dc.subjecttumor cell line
dc.subjectactin
dc.subjectmembrane protein
dc.subjectprotein Cdc42
dc.subjectActins
dc.subjectAnimals
dc.subjectcdc42 GTP-Binding Protein
dc.subjectCell Line, Tumor
dc.subjectCell Membrane
dc.subjectCell Shape
dc.subjectMembrane Proteins
dc.subjectModels, Theoretical
dc.subjectRats
dc.typeArticle
dc.contributor.departmentBIOLOGICAL SCIENCES
dc.description.doi10.1038/s41467-017-02469-1
dc.description.sourcetitleNature Communications
dc.description.volume9
dc.description.issue1
dc.description.page136
dc.published.statepublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467-017-02469-1.pdf3.31 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons