Please use this identifier to cite or link to this item: https://doi.org/10.1186/2040-7378-2-15
Title: Evidence that adiponectin receptor 1 activation exacerbates ischemic neuronal death
Authors: Thundyil, J
Tang, S.-C
Okun, E
Shah, K
Karamyan, V.T
Li, Y.-I
Woodruff, T.M
Taylor, S.M
Jo, D.-G
Mattson, M.P
Arumugam, T.V 
Keywords: adiponectin receptor 1
adiponectin receptor 2
carbon dioxide
glucose
hydroxymethylglutaryl coenzyme A reductase kinase
mitogen activated protein kinase p38
oxygen
adult
animal cell
animal cell culture
animal experiment
animal model
animal tissue
article
atmosphere
brain cell
brain ischemia
brain tissue
case report
controlled study
disease exacerbation
embryo
human
human experiment
immunoblotting
immunochemistry
in vitro study
in vivo study
incubation time
male
middle cerebral artery occlusion
mouse
neocortex
nerve cell necrosis
nonhuman
pathogenesis
priority journal
reperfusion injury
reverse transcription polymerase chain reaction
Issue Date: 2010
Citation: Thundyil, J, Tang, S.-C, Okun, E, Shah, K, Karamyan, V.T, Li, Y.-I, Woodruff, T.M, Taylor, S.M, Jo, D.-G, Mattson, M.P, Arumugam, T.V (2010). Evidence that adiponectin receptor 1 activation exacerbates ischemic neuronal death. Experimental and Translational Stroke Medicine 2 (1) : 15. ScholarBank@NUS Repository. https://doi.org/10.1186/2040-7378-2-15
Rights: Attribution 4.0 International
Abstract: Background-: Adiponectin is a hormone produced in and released from adipose cells, which has been shown to have anti-diabetic and anti-inflammatory actions in peripheral cells. Two cell surface adiponectin receptors (ADRs) mediate the majority of the known biological actions of adiponectin. Thus far, ADR expression in the brain has been demonstrated in the arcuate and the paraventricular nucleus of hypothalamus, where its activation affects food intake. Recent findings suggest that levels of circulating adiponectin increase after an ischemic stroke, but the role of adiponectin receptor activation in stroke pathogenesis and its functional outcome is unclear.Methods-: Ischemic stroke was induced in C57BL/6 mice by middle cerebral artery occlusion (MCAO) for 1 h, followed by reperfusion. Primary cortical neuronal cultures were established from individual embryonic neocortex. For glucose deprivation (GD), cultured neurons were incubated in glucose-free Locke's medium for 6, 12 or 24 h. For combined oxygen and glucose deprivation (OGD), neurons were incubated in glucose-free Locke's medium in an oxygen-free chamber with 95% N2/5% CO2atmosphere for either 3, 6, 9, 12 or 24 h. Primary neurons and brain tissues were analysed for Adiponectin and ADRs using reverse transcriptase polymerase chain reaction (RT-PCR), immunoblot and immunochemistry methods.Results-: Cortical neurons express ADR1 and ADR2, and that the levels of ADR1 are increased in neurons in response to in vitro or in vivo ischemic conditions. Neurons treated with either globular or trimeric adiponectin exhibited increased vulnerability to oxygen and glucose deprivation which was associated with increased activation of a pro-apoptotic signaling cascade involving p38 mitogen-activated protein kinase (p38MAPK) and AMP-activated protein kinase (AMPK).Conclusions-: This study reveals a novel pathogenic role for adiponectin and adiponectin receptor activation in ischemic stroke. We show that cortical neurons express ADRs and reveal a pro-apoptotic role for ADR1 activation in neurons, which may render them vulnerable to ischemic death. © 2010 Thundyil et al; licensee BioMed Central Ltd.
Source Title: Experimental and Translational Stroke Medicine
URI: https://scholarbank.nus.edu.sg/handle/10635/177791
ISSN: 20407378
DOI: 10.1186/2040-7378-2-15
Rights: Attribution 4.0 International
Appears in Collections:Staff Publications
Elements

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1186_2040-7378-2-15.pdf2.11 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons