Please use this identifier to cite or link to this item:
https://doi.org/10.1038/srep20415
Title: | Cell contractility arising from topography and shear flow determines human mesenchymal stem cell fate | Authors: | Sonam, S Sathe, S.R Yim, E.K.F Sheetz, M.P Lim, C.T |
Keywords: | 6-(4-(3-(methylsulfonyl)benzylamino)-5-(trifluoromethyl)pyrimidin-2-ylamino)-3,4-dihydroquinolin-2(1H)-one myosin adenosine triphosphatase quinolone derivative sulfone biophysics bone development cell adhesion cell culture cell differentiation cytology drug effects extracellular matrix focal adhesion human mechanical stress mesenchymal stroma cell metabolism physiology Actomyosin Biophysical Phenomena Cell Adhesion Cell Differentiation Cells, Cultured Extracellular Matrix Focal Adhesions Humans Mesenchymal Stromal Cells Osteogenesis Quinolones Stress, Mechanical Sulfones |
Issue Date: | 2016 | Publisher: | Nature Publishing Group | Citation: | Sonam, S, Sathe, S.R, Yim, E.K.F, Sheetz, M.P, Lim, C.T (2016). Cell contractility arising from topography and shear flow determines human mesenchymal stem cell fate. Scientific Reports 6 : 20415. ScholarBank@NUS Repository. https://doi.org/10.1038/srep20415 | Abstract: | Extracellular matrix (ECM) of the human Mesenchymal Stem Cells (MSCs) influences intracellular tension and is known to regulate stem cell fate. However, little is known about the physiological conditions in the bone marrow, where external forces such as fluid shear stress, apart from the physical characteristics of the ECM, influence stem cell response. Here, we hypothesize that substrate topography and fluid shear stress alter the cellular contractile forces, influence the genetic expression of the stem cells and hence alter their lineage. When fluid shear stress was applied, human MSCs with higher contractility (seeded on 1 Î 1/4m wells) underwent osteogenesis, whereas those with lower contractility (seeded on 2 Î 1/4m gratings) remained multipotent. Compared to human MSCs seeded on gratings, those seeded on wells exhibited altered alignment and an increase in the area and number of focal adhesions. When actomyosin contractility was inhibited, human MSCs did not exhibit differentiation, regardless of the topographical feature they were being cultured on. We conclude that the stresses generated by the applied fluid flow impinge on cell contractility to drive the stem cell differentiation via the contractility of the stem cells. | Source Title: | Scientific Reports | URI: | https://scholarbank.nus.edu.sg/handle/10635/174993 | ISSN: | 20452322 | DOI: | 10.1038/srep20415 |
Appears in Collections: | Elements Staff Publications |
Show full item record
Files in This Item:
File | Description | Size | Format | Access Settings | Version | |
---|---|---|---|---|---|---|
10_1038_srep20415.pdf | 5.64 MB | Adobe PDF | OPEN | None | View/Download |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.