Please use this identifier to cite or link to this item:
Title: Defect engineered bioactive transition metals dichalcogenides quantum dots
Authors: Ding X. 
Peng F. 
Zhou J. 
Gong W.
Slaven G. 
Loh K.P. 
Lim C.T. 
Leong D.T. 
Keywords: chalcogen
quantum dot
transition element
aqueous solution
biomedical engineering
chemical reaction
human cell
oxidative stress
room temperature
SW480 cell line
Issue Date: 2019
Publisher: Nature Publishing Group
Citation: Ding X., Peng F., Zhou J., Gong W., Slaven G., Loh K.P., Lim C.T., Leong D.T. (2019). Defect engineered bioactive transition metals dichalcogenides quantum dots. Nature Communications 10 (1) : 41. ScholarBank@NUS Repository.
Abstract: Transition metal dichalcogenide (TMD) quantum dots (QDs) are fundamentally interesting because of the stronger quantum size effect with decreased lateral dimensions relative to their larger 2D nanosheet counterparts. However, the preparation of a wide range of TMD QDs is still a continual challenge. Here we demonstrate a bottom-up strategy utilizing TM oxides or chlorides and chalcogen precursors to synthesize a small library of TMD QDs (MoS 2 , WS 2 , RuS 2 , MoTe 2 , MoSe 2 , WSe 2 and RuSe 2 ). The reaction reaches equilibrium almost instantaneously (~10–20 s) with mild aqueous and room temperature conditions. Tunable defect engineering can be achieved within the same reactions by deviating the precursors’ reaction stoichiometries from their fixed molecular stoichiometries. Using MoS 2 QDs for proof-of-concept biomedical applications, we show that increasing sulfur defects enhanced oxidative stress generation, through the photodynamic effect, in cancer cells. This facile strategy will motivate future design of TMDs nanomaterials utilizing defect engineering for biomedical applications. © 2019, The Author(s).
Source Title: Nature Communications
ISSN: 20411723
DOI: 10.1038/s41467-018-07835-1
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467-018-07835-1.pdf3.2 MBAdobe PDF



Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.