Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-018-07835-1
DC FieldValue
dc.titleDefect engineered bioactive transition metals dichalcogenides quantum dots
dc.contributor.authorDing X.
dc.contributor.authorPeng F.
dc.contributor.authorZhou J.
dc.contributor.authorGong W.
dc.contributor.authorSlaven G.
dc.contributor.authorLoh K.P.
dc.contributor.authorLim C.T.
dc.contributor.authorLeong D.T.
dc.date.accessioned2020-09-03T10:45:35Z
dc.date.available2020-09-03T10:45:35Z
dc.date.issued2019
dc.identifier.citationDing X., Peng F., Zhou J., Gong W., Slaven G., Loh K.P., Lim C.T., Leong D.T. (2019). Defect engineered bioactive transition metals dichalcogenides quantum dots. Nature Communications 10 (1) : 41. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-018-07835-1
dc.identifier.issn20411723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/174187
dc.description.abstractTransition metal dichalcogenide (TMD) quantum dots (QDs) are fundamentally interesting because of the stronger quantum size effect with decreased lateral dimensions relative to their larger 2D nanosheet counterparts. However, the preparation of a wide range of TMD QDs is still a continual challenge. Here we demonstrate a bottom-up strategy utilizing TM oxides or chlorides and chalcogen precursors to synthesize a small library of TMD QDs (MoS 2 , WS 2 , RuS 2 , MoTe 2 , MoSe 2 , WSe 2 and RuSe 2 ). The reaction reaches equilibrium almost instantaneously (~10–20 s) with mild aqueous and room temperature conditions. Tunable defect engineering can be achieved within the same reactions by deviating the precursors’ reaction stoichiometries from their fixed molecular stoichiometries. Using MoS 2 QDs for proof-of-concept biomedical applications, we show that increasing sulfur defects enhanced oxidative stress generation, through the photodynamic effect, in cancer cells. This facile strategy will motivate future design of TMDs nanomaterials utilizing defect engineering for biomedical applications. © 2019, The Author(s).
dc.publisherNature Publishing Group
dc.sourceUnpaywall 20200831
dc.subjectchalcogen
dc.subjectquantum dot
dc.subjecttransition element
dc.subjectaqueous solution
dc.subjectArticle
dc.subjectbiomedical engineering
dc.subjectbiomineralization
dc.subjectchemical reaction
dc.subjecthuman
dc.subjecthuman cell
dc.subjecthydrodynamics
dc.subjectoxidative stress
dc.subjectphotodegradation
dc.subjectphotodynamics
dc.subjectprecursor
dc.subjectroom temperature
dc.subjectstoichiometry
dc.subjectSW480 cell line
dc.subjectsynthesis
dc.typeArticle
dc.contributor.departmentBIOMED INST FOR GLOBAL HEALTH RES & TECH
dc.contributor.departmentPHARMACY
dc.contributor.departmentPHYSICS
dc.contributor.departmentCHEMISTRY
dc.contributor.departmentBIOENGINEERING
dc.contributor.departmentCHEMICAL & BIOMOLECULAR ENGINEERING
dc.description.doi10.1038/s41467-018-07835-1
dc.description.sourcetitleNature Communications
dc.description.volume10
dc.description.issue1
dc.description.page41
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467-018-07835-1.pdf3.2 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.