Please use this identifier to cite or link to this item:
https://doi.org/10.1038/am.2015.65
Title: | Unraveling how electronic and spin structures control macroscopic properties of manganite ultra-thin films | Authors: | Yin, X Majidi, M.A Chi, X Ren, P You, L Palina, N Yu, X Diao, C Schmidt, D Wang, B Yang, P Breese, M.B.H Wang, J Rusydi, A |
Keywords: | Circular dichroism spectroscopy Degrees of freedom (mechanics) Dichroism Ferromagnetic materials Ferromagnetism Insulation Jahn-Teller effect Magnetic properties Magnetism Manganese oxide Manganites Spectroscopic ellipsometry Ultrathin films X ray absorption spectroscopy Intermediate temperatures Macroscopic properties Macroscopic transport Orbital degrees of freedom Perovskite manganites Strongly correlated electron system Transport and magnetic properties X-ray magnetic circular dichroism Thin films |
Issue Date: | 2015 | Citation: | Yin, X, Majidi, M.A, Chi, X, Ren, P, You, L, Palina, N, Yu, X, Diao, C, Schmidt, D, Wang, B, Yang, P, Breese, M.B.H, Wang, J, Rusydi, A (2015). Unraveling how electronic and spin structures control macroscopic properties of manganite ultra-thin films. NPG Asia Materials 7 : e196. ScholarBank@NUS Repository. https://doi.org/10.1038/am.2015.65 | Abstract: | Perovskite manganites exhibit fascinating transport and magnetic properties, essential for fundamental research and applications. With the development of thin film technologies, more exotic properties have been observed in doped-manganites over a wide range of temperature. Unraveling the interplay of spin, charge and orbital degrees of freedom that drives exotic, macroscopic properties is therefore crucial for the understanding of strongly correlated electron systems. Here, using a combination of transport, spectroscopic ellipsometry, X-ray absorption spectroscopy and X-ray magnetic circular dichroism, we observe two concomitant electronic and magnetic phases (insulating paramagnetic phase for T>195 K and insulating canted-ferromagnetic for T<140 K) with an intermediate metal-like state in ultra-thin La 0.7 Sr 0.3 MnO 3 (LSMO) film on DyScO 3 substrate. Surprisingly, the O2p-Mn3d hybridization strength reduces with decreasing temperature, driving the system more insulating and ferromagnetic. The Jahn-Teller effect weakens markedly within the intermediate temperature range, making the system more metal-like. We also apply this comprehensive method to a LSMO film on SrTiO 3 substrate for comparison. Our study reveals that the interplay of the O2p-Mn3d hybridization and the dynamic Jahn-Teller splitting controls the macroscopic transport and magnetic properties in ultra-thin manganites. © 2015 Nature Publishing Group All rights reserved. | Source Title: | NPG Asia Materials | URI: | https://scholarbank.nus.edu.sg/handle/10635/174123 | ISSN: | 18844049 | DOI: | 10.1038/am.2015.65 |
Appears in Collections: | Elements Staff Publications |
Show full item record
Files in This Item:
File | Description | Size | Format | Access Settings | Version | |
---|---|---|---|---|---|---|
10_1038_am_2015_65.pdf | 1.49 MB | Adobe PDF | OPEN | None | View/Download |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.