Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/104320
Title: The noether inequality for smooth minimal 3-folds
Authors: Catanese, F.
Chen, M.
Zhang, D.E.-Q.I. 
Issue Date: Jul-2006
Citation: Catanese, F.,Chen, M.,Zhang, D.E.-Q.I. (2006-07). The noether inequality for smooth minimal 3-folds. Mathematical Research Letters 13 (4) : 653-666. ScholarBank@NUS Repository.
Abstract: Let X be a smooth projective minimal 3-fold of general type. We prove the sharp inequality K x 3 ≥ 2/3(2p g(X)-5), an analogue of the classical Noether inequality for algebraic surfaces of general type. © International Press 2006.
Source Title: Mathematical Research Letters
URI: http://scholarbank.nus.edu.sg/handle/10635/104320
ISSN: 10732780
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.