Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/104320
DC FieldValue
dc.titleThe noether inequality for smooth minimal 3-folds
dc.contributor.authorCatanese, F.
dc.contributor.authorChen, M.
dc.contributor.authorZhang, D.E.-Q.I.
dc.date.accessioned2014-10-28T02:47:52Z
dc.date.available2014-10-28T02:47:52Z
dc.date.issued2006-07
dc.identifier.citationCatanese, F.,Chen, M.,Zhang, D.E.-Q.I. (2006-07). The noether inequality for smooth minimal 3-folds. Mathematical Research Letters 13 (4) : 653-666. ScholarBank@NUS Repository.
dc.identifier.issn10732780
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/104320
dc.description.abstractLet X be a smooth projective minimal 3-fold of general type. We prove the sharp inequality K x 3 ≥ 2/3(2p g(X)-5), an analogue of the classical Noether inequality for algebraic surfaces of general type. © International Press 2006.
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.sourcetitleMathematical Research Letters
dc.description.volume13
dc.description.issue4
dc.description.page653-666
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.