Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/104320
Title: The noether inequality for smooth minimal 3-folds
Authors: Catanese, F.
Chen, M.
Zhang, D.E.-Q.I. 
Issue Date: Jul-2006
Citation: Catanese, F.,Chen, M.,Zhang, D.E.-Q.I. (2006-07). The noether inequality for smooth minimal 3-folds. Mathematical Research Letters 13 (4) : 653-666. ScholarBank@NUS Repository.
Abstract: Let X be a smooth projective minimal 3-fold of general type. We prove the sharp inequality K x 3 ≥ 2/3(2p g(X)-5), an analogue of the classical Noether inequality for algebraic surfaces of general type. © International Press 2006.
Source Title: Mathematical Research Letters
URI: http://scholarbank.nus.edu.sg/handle/10635/104320
ISSN: 10732780
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

49
checked on Oct 26, 2018

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.