Please use this identifier to cite or link to this item:
https://doi.org/10.1007/JHEP02(2014)067
Title: | A topological Chern-Simons sigma model and new invariants of three-manifolds | Authors: | Luo, Y. Tan, M.-C. |
Keywords: | Differential and Algebraic Geometry Sigma Models Supersymmetric gauge theory Topological Field Theories |
Issue Date: | Feb-2014 | Citation: | Luo, Y., Tan, M.-C. (2014-02). A topological Chern-Simons sigma model and new invariants of three-manifolds. Journal of High Energy Physics 2014 (2) : -. ScholarBank@NUS Repository. https://doi.org/10.1007/JHEP02(2014)067 | Abstract: | We construct a topological Chern-Simons sigma model on a Riemannian threemanifold M with gauge group G whose hyperkähler target space X is equipped with a G-action. Via a perturbative computation of its partition function, we obtain new topological invariants of M that define new weight systems which are characterized by both Lie algebra structure and hyperkähler geometry. In canonically quantizing the sigma model, we find that the partition function on certain M can be expressed in terms of Chern-Simons knot invariants of M and the intersection number of certain G-equivariant cycles in the moduli space of G-covariant maps from M to X. We also construct supersymmetric Wilson loop operators, and via a perturbative computation of their expectation value, we obtain new knot invariants of M that define new knot weight systems which are also characterized by both Lie algebra structure and hyperkähler geometry.©The Authors. | Source Title: | Journal of High Energy Physics | URI: | http://scholarbank.nus.edu.sg/handle/10635/95698 | ISSN: | 11266708 | DOI: | 10.1007/JHEP02(2014)067 |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.