Please use this identifier to cite or link to this item:
https://doi.org/10.1088/0305-4470/18/14/020
Title: | A globally convergent procedure for solving a system of nonlinear algebraic equations | Authors: | Tang, S.M. Kok, W.C. |
Issue Date: | 1985 | Citation: | Tang, S.M., Kok, W.C. (1985). A globally convergent procedure for solving a system of nonlinear algebraic equations. Journal of Physics A: General Physics 18 (14) : 2691-2699. ScholarBank@NUS Repository. https://doi.org/10.1088/0305-4470/18/14/020 | Abstract: | A reliable computational procedure for solving a system of algebraic equations of the general form F(x)=0 is presented. Global convergence is achieved through the requirement that the norm //F// decreases at each iteration as far as is feasible. A discussion of convergence and illustrative examples are given for two variable systems and these considerations are extended to systems of n equations in n variables with particular reference to three variable systems. | Source Title: | Journal of Physics A: General Physics | URI: | http://scholarbank.nus.edu.sg/handle/10635/95628 | ISSN: | 03054470 | DOI: | 10.1088/0305-4470/18/14/020 |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
SCOPUSTM
Citations
5
checked on Jan 31, 2023
WEB OF SCIENCETM
Citations
3
checked on Jan 31, 2023
Page view(s)
183
checked on Feb 2, 2023
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.