Please use this identifier to cite or link to this item: https://doi.org/10.1088/0305-4470/18/14/020
DC FieldValue
dc.titleA globally convergent procedure for solving a system of nonlinear algebraic equations
dc.contributor.authorTang, S.M.
dc.contributor.authorKok, W.C.
dc.date.accessioned2014-10-16T09:13:56Z
dc.date.available2014-10-16T09:13:56Z
dc.date.issued1985
dc.identifier.citationTang, S.M., Kok, W.C. (1985). A globally convergent procedure for solving a system of nonlinear algebraic equations. Journal of Physics A: General Physics 18 (14) : 2691-2699. ScholarBank@NUS Repository. https://doi.org/10.1088/0305-4470/18/14/020
dc.identifier.issn03054470
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/95628
dc.description.abstractA reliable computational procedure for solving a system of algebraic equations of the general form F(x)=0 is presented. Global convergence is achieved through the requirement that the norm //F// decreases at each iteration as far as is feasible. A discussion of convergence and illustrative examples are given for two variable systems and these considerations are extended to systems of n equations in n variables with particular reference to three variable systems.
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentPHYSICS
dc.description.doi10.1088/0305-4470/18/14/020
dc.description.sourcetitleJournal of Physics A: General Physics
dc.description.volume18
dc.description.issue14
dc.description.page2691-2699
dc.identifier.isiutA1985ARR7700020
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

5
checked on Jan 15, 2020

WEB OF SCIENCETM
Citations

3
checked on Jan 15, 2020

Page view(s)

49
checked on Dec 28, 2019

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.